
CS260: Machine Learning Theory
Lecture 7: Online Classification and Mistake Bounds

October 17, 2011

Lecturer: Jennifer Wortman Vaughan

1 Online Classification

So far we have been considering the batch learning setting in which the learning algorithm is presented with
a sample of training data and must produce a hypothesis that performs well on new data generated from the
same distribution. For the next few weeks, we will shift our attention to the online learning setting, in which
the learning algorithm is presented with a sequence of examples over time, and must repeatedly update its
hypothesis based on these examples. The online learning setting can be used to model applications like
spam filtering, in which the algorithm must adapt to feedback.

A Basic Online Classification Model

In the basic online setting, at each round t ∈ {1, 2, 3, · · · },

1. The learner is presented with a new example ~xt.

2. The learner must predict a label ŷt for this example.

3. After the prediction is made, the true label yt of the example is revealed.

4. The learner updates its prediction rule based on ~xt, ŷt, and yt.

Unlike the PAC learning model, no distributional assumptions are made about the sequence of examples
~x1, ~x2, · · · . The online learning setting is therefore “adversarial” in the sense that we can imagine the
examples are generated by an adversary who would like to force our algorithm to make as many mistakes
as possible. Because of this, there are a lot of connections between online learning and game theory, some
of which we will discuss in upcoming classes.

The learning algorithm is said to make a mistake on any round t at which yt 6= ŷt. There are several
reasonable goals that could be considered in this setting. We will discuss two:

1. Minimize the number of mistakes made by the algorithm. In this case, we would like to find a bound
on the total number of mistakes made by the algorithm such that the ratio

of mistakes
of rounds

tends to zero as number of rounds gets large.

All CS260 lecture notes build on the scribes’ notes written by UCLA students in the Fall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of them contain errors. If you spot an error, please email Jenn.

1

In order to achieve such a goal, it is necessary to make some assumptions about the way in which the
labels yt are generated. For example, we might assume that there exists a target function c in a class C
such that for all t, yt = c(~xt). This is the analog of the realizable batch learning setting we discussed.

2. Minimize regret. This is the analog of the unrealizable batch learning setting, as we no longer need
to assume the existence of a perfect target function. Instead, we minimize the difference between the
number of mistakes the algorithm makes and the number of mistakes made by the best predictor or
comparator in a class of functions. In short, we would like the ratio

of mistakes − # of mistakes by comparator
of rounds

to tend to zero as number of rounds grows.

The regret minimization scenario may be more realistic and useful in real-world applications in which
we do not have the luxury of assuming a perfect target exists or that our data is free of noise. However,
to get started, we will focus on the first goal for the next few lectures. To get some intuition about the
online classification setting and the classes that can or cannot be learned, we will establish some general
upper and lower bounds for the Mistake Bound Model (which we will not define formally, but will discuss
only informally; check out Avrim Blum’s online learning survey1 for a more formal treatment). In the next
lecture, we will start looking at more interesting algorithms that can be applied to learn specific concept
classes like linear threshold functions.

2 A Simple Upper Bound

We begin by deriving an upper bound for the Mistake Bound Model that can be applied to any finite concept
class. The learning algorithm we consider, the Halving Algorithm, makes use of the notion of a version
space. The version space is defined to be the set of all functions from the class C that are consistent with
all of the data that the algorithm has seen so far. Over time, as the algorithm sees more examples and
more functions become inconsistent, the version space decreases in size. Notice that this concept of version
space is only sensible to consider when we make the assumption that there is a perfect target function in C;
otherwise the version space could become empty.

The halving algorithm works as follows. At each round t = 1, 2, 3, · · · ,

1. When a new example ~xt arrives, set ŷt to be the label chosen for ~xt by the majority of functions in the
current version space, VSt.

2. When the true label yt is revealed, update the version space to VSt+1.

Note that this algorithm can, in general, be terribly inefficient. As a result, the upper bound given in this
theorem says nothing about what can be learned efficiently.

Theorem 1. Let C be any finite concept class. If there exists a function c ∈ C such that for all rounds t,
yt = c(~xt), then the number of mistakes made by the Halving Algorithm is no more than log2 |C|.

1http://www.cs.cmu.edu/˜avrim/Papers/survey.pdf

2

Proof: We will analyze the size of the version space over time as the number of mistakes grows. We start
with the simple observation that the version space cannot possibly be bigger than the size of the entire
concept class C. That is, |VSt| ≤ |C| for all t.

If a first mistake is made on some round t1, it implies that the majority of the functions in VSt1 were
incorrect about the label of xt1 , and are now inconsistent with the data. Therefore, at least half of the
functions in the VSt1 will be eliminated, and we know that |VSt| ≤ |C|/2 for all t > t1.

If a second mistake is made on some round t2, then half of the remaining functions in the version space
will be eliminated. We have that |VSt| ≤ |C|/4 for all t > t2.

More generally, if the kth mistake is made on some round tk, then we know that |VSt| ≤ |C|/2k for all
t > tk. Since we are in a setting in which there exists a perfect target function in C, we know that for all t,
|VSt| ≥ 1.

Combining these expressions, we get that on any round t after k mistakes have been made,

1 ≤ |VSt| ≤
|C|
2k

which implies that k ≤ log |C|. If the halving algorithm made more than log |C| mistakes, this condition
would be violated, so it must make fewer.

This result has the familiar logarithmic dependence on the size of the concept class, reflecting the Oc-
cam’s razor principle that the bigger the class we start with, the harder it is to learn. As an example consider
the class of monotone conjunctions where |C| = 2n for n features. The number of mistakes is bounded by n
for this class. However as mentioned above, this algorithm is generally computationally infeasible (except
in special cases) as it requires tracking a version space of 2n functions and computing a majority label by
evaluating up to 2n functions at every step of the algorithm.

3 Lower Bound

It is possible to derive simple lower bounds in this setting too. In particular, if C has VC dimension d,
then we can force any deterministic algorithm A to make at least d mistakes. The key is that we are in an
adversarial setting. By the definition of VC dimension, we know that there exists some set of d points that
is shattered by C. (If there is more than one, we can pick one arbitrarily.) The adversary can choose these d
points as the first d examples, ~x1, ..., ~xd. Since these exist functions in C achieving every labeling of these
points, the adversary can choose a target function in such a way that A makes a mistake on each of these
rounds.

It is straight-forward to adapt this lower bound for randomized algorithms too and show that the adver-
sary can cause at least d/2 mistakes on expectation by choosing the labels of the d shattered points uniformly
at random.

4 The second half of class...

We spent the second half of class finishing our discussion of Problem Set 1.

3

