
CS260: Machine Learning Theory
Lecture 6: VC Dimension Lower Bound

October 12, 2011

Lecturer: Jennifer Wortman Vaughan

1 A Lower Bound

In the last lecture, we discussed a result that shows that in the realizable (perfect target function) setting,
if our algorithm is given m i.i.d. labeled examples and outputs a consistent function h ∈ H, then with
probability at least 1− δ, err(h) ≤ ε for

m = O

(
1

ε
log

1

δ
+
d

ε
log

1

ε

)
,

where d is the VC dimension of the hypothesis classH. This gives us an upper bound on sample complexity
that is linear in the VC dimension. But is this linear dependence tight?

In this class, we will see that it is tight. In particular, we will prove a lower bound showing that at least
d/2 examples are needed to guarantee error less than ε with probability 1−δ for any ε, δ < 1/8. This shows
that the linear dependence on VC dimension in the sample complexity is necessary.

(This lower bound can actually be modified to show that Ω(d/ε) examples are needed, proving that the
linear dependence on 1/ε is necessary too; see Chapter 3.6 of Kearns and Vazirani for a rough sketch, but be
careful – there is a bug in their use of Markov’s inequality, so the argument doesn’t quite work as presented!)

In this theorem, we consider the case in which C = H; that is, we are learning C by C.

Theorem 1. Fix an arbitrary concept class C with VC Dimension d. For any learning algorithm A, ∃c ∈ C
and ∃D such that if A receives m ≤ d/2 examples sampled i.i.d. from D labeled by c and outputs a
hypothesis h, then

Pr
(

err(h) >
1

8

)
>

1

8
.

Note that the lower bound in Theorem 2 holds for any algorithm A, not only algorithms that output
consistent functions. Thus Theorem 2 shows that no algorithm can achieve arbitrarily small error with
arbitrarily high probability unless the algorithm is given a number of examples that is at least linear in the
VC Dimension of C. This in turn tells us that any class with infinite VC dimension is not PAC learnable; a
class can only be PAC learnable (by our modified definition) if its VC dimension is at most polynomial in
the size of the input.

We now present the proof.
Proof of Theorem 1: We need to show that for any C and A, there exists a distribution D and target c ∈ C
for which A has bad performance. We start by constructing D.

All CS260 lecture notes build on the scribes’ notes written by UCLA students in the Fall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of them contain errors. If you spot an error, please email Jenn.

1



By the definition of VC Dimension, there must exist a set of points {~x1, . . . , ~xd} that C shatters. Let D
assign weight 1/d to each of these points, and weight 0 to all other points.

Now, let C′ ⊆ C be a set of 2d functions that shatter these points. For every possible labeling of the
d points, there is exactly one function in C′ that achieves the labeling. We will eventually want to show
that there exists a particular c ∈ C′ that is “bad” for A, but for now, let’s suppose that we choose the target
function c uniformly at random from these 2d functions. This is equivalent to flipping a fair coin to determine
the label of each of the d points.

Consider the following question: if we choose a target c uniformly from C′, run A on a sample of m
points S drawn i.i.d. from the “bad” distribution D, and output a function h, what is the probability that h
makes an error on a new point? There are three sources of randomness here: the choice of c, the choice of
the sample S, and the choice of a new point ~x.1 We can write this probability as Prc,S,~x[h(~x) 6= c(~x)]. We
have

Prc,S,~x(h(~x) 6= c(~x)) ≥ Prc,S,~x(~x 6∈ S ∧ h(~x) 6= c(~x))

= Pr(x 6∈ S)Pr(h(~x) 6= c(~x) | x 6∈ S)

≥ 1

2
· 1

2
=

1

4
.

We can marginalize to get

Prc,S,~x(h(~x) 6= c(~x)) =
∑
c∈C′

Pr(c)PrS,~x(h(~x) 6= c(~x)|c) = Ec

[
PrS,~x(h(~x) 6= c(~x)|c)

]
.

Combining this with the previous result yields

Ec

[
PrS,~x (h(~x) 6= c(~x)|c))

]
≥ 1

4
,

which implies that there must exist at least one function c ∈ C′ such that

PrS,~x (h(~x) 6= c(~x)) ≥ 1

4
.

This is the function we will choose as the “bad” target for A.
Finally, we marginalize over S and work towards obtaining a bound on the probability that err(h) is

high.

PrS,~x (h(~x) 6= c(~x)) = ES [Pr~x (h(~x) 6= c(~x))]

= ES [err(h)]

= Pr
(

err(h) >
1

8

)
ES

[
err(h) | err(h) >

1

8

]
+Pr

(
err(h) ≤ 1

8

)
ES

[
err(h) | err(h) ≤ 1

8

]
≤ Pr

(
err(h) >

1

8

)
+

1

8
.

1We are implicitly assuming A is deterministic here, but it is an easy exercise to modify this proof so it holds for randomized
algorithms too.

2



Using the bound above, this gives us that for the particular choice of D and c defined above,

1

4
≤ Pr

(
err(h) >

1

8

)
+

1

8

and so

Pr
(

err(h) >
1

8

)
≥ 1

8
.

2 And the rest...

We spent the remainder of class talking about the solutions to problem set 1 and guidelines for the course
projects. We will continue talking about problem set 1 on Monday.

3


