
CS260: Machine Learning Theory
Lecture 5: Infinite Function Classes and VC Dimension

October 10, 2011

Lecturer: Jennifer Wortman Vaughan

1 Infinite Function Classes

The general learning bounds that we proved in the last few lectures holdfor any finite classH. In this
lecture, we will consider the case in whichH is infinite. We have already seen a couple examples of an
infinite function classes: the class of one-dimensional threshold functionswe analyzed in class, and the
class of axis-aligned rectangles that you analyzed in the first homework assignment.

To handle infinite function classes, we need to replace theln |H| term in our bounds with some other
notion of complexity. To gain some intuition, we begin with a “bad” argument of how this might be done.
Suppose we have anH in which each function is parameterized byk real numbers. For example, ann-
dimensional axis-aligned rectangle hask = 2n parameters. Ann-dimensional linear threshold function has
k = n + 1 parameters. Suppose we would like to store a representation of such a function on a computer
with finite memory. If we useb bits to represent each real valued parameter, it takes a total ofkb bits to
represent a function. Our hypothesis class would then effectively have2kb different hypotheses.

If we substitute this value into our sample complexity bound, we observe that thenumber of training
examples we need to guarantee low error with high probability isO

(

1

ǫ
(k + ln(1/δ))

)

. In this case, the
number of training samples needed islinear in the number of parameters.

While this argument provides a decent heuristic (complexity of a class is roughly equal to the number
of parameters), the argument we have used here is not completely satisfying. In this lecture, we will discuss
more accurate ways to measure the complexity of a concept class.

In everything that follows, we will assume that we are working in a model of computation in which we
can store and manipulate real numbers in constant space and time. This is crucial if we want to say anything
about efficient algorithms in this setting.

1.1 The Growth Function

LetS be a vector ofm (arbitrary) examplesx1, . . . , xm. Givenh ∈ H we defineh(S) = 〈h(x1), . . . , h(xm)〉
to be the behavior ofh on the examples. There might be otherh′ ∈ H with identical behavior on these
points, that is, otherh′ such thath(S) = h′(S). Thebehavior setof H onS, denotedΠH(S), is the set of
all possible behaviors of functionsh ∈ H on the setS, that is

ΠH(S) = {h(S)|h ∈ H}.

For binary classification, we have|ΠH(S)| ≤ 2m for all setsS of sizem.

All CS260 lecture notes build on the scribes’ notes written by UCLA students inthe Fall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of themcontain errors. If you spot an error, please email Jenn.

1

Thegrowth functionof H is defined as

ΠH(m) = max
{S:|S|=m}

|ΠH(S)|.

For anyH, it measures the maximum number of different ways that functions inH can behave on any set of
points of a particular size. Note that|ΠH(m)| ≤ 2m.

Let’s look at some examples to get intuition.

Example 1. LetH be the class of one-dimensional threshold functions. Given a single point in(0, 1), there
are two ways that functions inH can label the point, soΠH(1) = 2. Given two points, there are three ways
that functions inH can label them:

− −

− +

+ +

soΠH(2) = 3. Given3 distinct points in(0, 1), there are4 different possibilities forh(S):

− − −

− − +

− + +

+ + +

soΠH(3) = 4. In general, if we havem points,ΠH(m) = m + 1. Notice that this is significantly smaller
than the general bound2m.

Example 2. LetH be the class of one-dimensional interval functions. Each function in the class is param-
eterized by two threshold values, a lower threshold (call thisl) and an upper threshold (call thisu). A point
x is labeled positive ifx ∈ [l, u] and labeled negative otherwise.

Figure 1: Intervals

If we are givenm distinct points in(0, 1). How many different behaviors can we observe? To answer
this question, it doesn’t matter where exactly the interval boundaries lie, what matters is which pairs of
points they lie between. Ourm points definem+1 regions in(0, 1). Then the number of different behaviors
equals the

(

m+1

2

)

different ways we can choose these regions plus1 (which is the case obtained if the two
boundaries are in the same region and so all the points are labeled negative), which isO(m2). This is again
far less than the pessimistic exponential bound.

2

It turns out that the growth function can be used to generate an error bound for infinite function classes.
Note that we are back to considering the realizable setting in which there is a perfect target function. We
will not discuss the proof of this result in class, but it is given in Chapter 3of Kearns and Vazirani.

Theorem 1. Consider any concept classesC andH for input spaceX . Suppose we have an algorithmA
that for any target functionc ∈ C, given a samplex1, . . . , xm ∈ X labeled byc, will return a function
h ∈ H consistent with this data. Then for any distributionD onX , for anyc ∈ C, for anyδ ∈ (0, 1/2), if
A is run on a sample ofm points drawn i.i.d. fromD and labeled byc, then with probability at least1− δ,

err(h) ≤ k

(

ln(ΠH(2m)) + ln(2/δ)

m

)

for a small constantk.

This bound is meaningless if the growth function is2m. However, as we have seen, it is often much
smaller. The problem with this bound is that the growth function is a tricky quantityto calculate in general.
For this reason, it is useful to introduce another notion of complexity, the VCdimension.

2 VC Dimension

We say that a setS = {x1, . . . , xm} of sizem is shatteredby the classH if all possible labelings ofS
are achievable by someh ∈ H. Formally,H shattersS if |ΠH(S)| = 2m. TheVC dimensionof H is the
cardinality of the largest setS that can be shattered byH.

The VC dimension is convenient because it can be calculated for many of classes of interest. To prove
that the VC dimension of a classH is d, it is necessary to 1) give an example of a set ofd points that can be
shattered, and 2) prove that no set ofd+ 1 points can be shattered.

Example 3. Once again, letH be the class of one-dimensional thresholds. It is easy to see that1 point can
be shattered, but2 cannot. Thus,V C(H) = 1.

Example 4. LetH be the class of one-dimensional intervals. We observe that2 points can be shattered, but
3 cannot. (See Figure 2.) Thus,V C(H) = 2.

Figure 2: This configuration is not possible

3

Figure 3: All the configurations possible

Figure 4: This configuration is not possible

Example 5. LetH be the class of linear threshold functions in two dimensions. Any3 points that do not lie
in a line can be shattered.

Note that a set of3 points that lie on the same line cannot be shattered. However, this has no influence
on the VC dimension because we only need there to exist one set of three points that can be shattered.

To prove that the VC dimension is 3, we must show that no set of four pointscan be shattered. We can
break this down into two cases: First, if one of the4 points lies in the convex hull of the other three, that
point cannot get a different label than the rest, so the points cannot be shattered. If no point lies in the
convex hull of the other three, then we can draw a square with the points asthe four corners. Pick one pair
of points that are diagonally across from each other. It is impossible to label these two points + and the
other two -. Therefore, the points cannot be shattered in this case either.

This result extends beyond two dimensions. In fact, it is the case that the VCdimension of linear
thresholds inn-dimensional space isn+ 1.

VC dimension is useful because of its relationship with the growth function.

Lemma 1. (Sauer’s Lemma) For anyH with finite VC dimensiond,

ΠH(m) ≤
d

∑

i=0

(

m

i

)

= O(md).

4

This lemma is very powerful. It tells us that all hypothesis classes fall into oneof two categories: Ifd
is infinite, thenΠH(m) = 2m. The bound in Theorem 1 is then meaningless. On the other hand, ifd is
finite, thenΠH(m) = O(md). In this case, the theorem gives us something very nice sinceln |ΠH(m)| =
O(d lnm). In this case, the error bound is linear ind and decreases to0 asm goes to infinity.

Using Sauer’s Lemma, it is possible to prove that under the same conditions in which Theorem 1 holds,
if H has VC dimensiond, then with probability of at least1− δ,

err(h) = O

(

d lnm+ ln(1/δ)

m

)

.

It is also possible to rearrange this bound to show that one can achieveerr(h) ≤ ǫ with probability at least
1− δ with a number of examples

m = O

(

1

ǫ
log

1

δ
+

d

ǫ
log

1

ǫ

)

.

Thus the number of examples needed to achieveerr(h) ≤ ǫ scales linearly with the VC dimensiond of
the function class. Intuitively, this result indicates that if one were to add more features to a model (and
thus increased), the number of training examplesm needed to achieve less thanǫ error scales linearly with
d; each dimension of the model requires at most a constant number of examples to learn. Let’s digest the
significance of this conclusion in a couple of concrete examples.

Case: 1-dimensional threshold functions
We have established that the VC dimension of one-dimensional threshold functions is1. The bound above
tells us that in order to achieve an error less thanǫ with high probability, we need

m = O

(

1

ǫ

(

log
1

δ
+ log

1

ǫ

))

.

Recall that in Lecture 2, we used the structure of this class to prove that wecan achieve the same
guarantee with

m =
1

ǫ
ln

(

2

δ

)

.

Observe that the bound we achieve using VC Dimension theory is not as tight,but not too bad.

Case:n-dimensional linear separators
We said that the VC Dimension ofn-dimensional linear separators isn + 1. The bound above tells us that
we can achieve error less thanǫ with high probability with

m = O

(

1

ǫ
log

1

δ
+

n+ 1

ǫ
log

1

ǫ

)

.

This follows the intuition in the bad argument we gave earlier, that the number ofsamples we need is roughly
linear in the number of parameters.

3 The Unrealizable Setting

The bounds presented here can be extended to the unrealizable setting. Again, the sample complexity will
scale with1/ǫ2 instead of1/ǫ. Anyone especially curious about this extension can see Chapter 4 of “Neural
Network Learning: Theoretical Foundations” by Anthony and Bartlett for a full derivation of results.

5

