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1 Infinite Function Classes

The general learning bounds that we proved in the last few lecturesftrolthy finite classH. In this
lecture, we will consider the case in whiéh is infinite. We have already seen a couple examples of an
infinite function classes: the class of one-dimensional threshold functiensnalyzed in class, and the
class of axis-aligned rectangles that you analyzed in the first homewsidnanent.

To handle infinite function classes, we need to replacéitligf| term in our bounds with some other
notion of complexity. To gain some intuition, we begin with a “bad” argument @f ttos might be done.
Suppose we have @H in which each function is parameterized byeal numbers. For example, an
dimensional axis-aligned rectangle tkas- 2n parameters. Am-dimensional linear threshold function has
k = n + 1 parameters. Suppose we would like to store a representation of suchtiafiubn a computer
with finite memory. If we usé bits to represent each real valued parameter, it takes a tokdl loits to
represent a function. Our hypothesis class would then effectively Hawifferent hypotheses.

If we substitute this value into our sample complexity bound, we observe thauthber of training
examples we need to guarantee low error with high probability {$ (k + In(1/4))). In this case, the
number of training samples needediigar in the number of parameters.

While this argument provides a decent heuristic (complexity of a class ishilpegqual to the number
of parameters), the argument we have used here is not completely sgtisfyihis lecture, we will discuss
more accurate ways to measure the complexity of a concept class.

In everything that follows, we will assume that we are working in a modebafputation in which we
can store and manipulate real numbers in constant space and time. Thigasi€me want to say anything
about efficient algorithms in this setting.

1.1 The Growth Function

Let .S be a vector ofn (arbitrary) examplesy, . . ., z,,,. Givenh € H we defineh(S) = (h(z1),...,h(zm))
to be the behavior of on the examples. There might be ottt#ére H with identical behavior on these
points, that is, othek’ such thati(S) = 4/(S). Thebehavior sebf H on S, denotedly(.S), is the set of
all possible behaviors of functiorise #H on the sefS, that is

I.(S) = {h(S)|h € H}.

For binary classification, we hayHy(S)| < 2™ for all setsS of sizem.
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Thegrowth functionof # is defined as

11 = 11 .
#(m) (s T3 (S)]

For any#, it measures the maximum number of different ways that functiods @an behave on any set of
points of a particular size. Note thdty, (m)| < 2™.
Let's look at some examples to get intuition.

Example 1. Let be the class of one-dimensional threshold functions. Given a single pdintlin there
are two ways that functions i can label the point, sbl4 (1) = 2. Given two points, there are three ways
that functions irf{ can label them:

solly(2) = 3. Given3 distinct points in(0, 1), there are4 different possibilities fof.(S):
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solly(3) = 4. In general, if we haven points,IIy(m) = m + 1. Notice that this is significantly smaller
than the general boun2i™.

Example 2. Let’H be the class of one-dimensional interval functions. Each function in the idgmsmram-
eterized by two threshold values, a lower threshold (call theamd an upper threshold (call thig). A point
x is labeled positive it € [/, «] and labeled negative otherwise.

Figure 1: Intervals

If we are givenm distinct points in(0,1). How many different behaviors can we observe? To answer
this question, it doesn’'t matter where exactly the interval boundaries het watters is which pairs of
points they lie between. Out points definen + 1 regions in(0, 1). Then the number of different behaviors
equals the(m;d) different ways we can choose these regions plgshich is the case obtained if the two
boundaries are in the same region and so all the points are labeled neativieh isO(m?). This is again
far less than the pessimistic exponential bound.



It turns out that the growth function can be used to generate an ewodtor infinite function classes.
Note that we are back to considering the realizable setting in which there ideztp@rget function. We
will not discuss the proof of this result in class, but it is given in Chaptefri8earns and Vazirani.

Theorem 1. Consider any concept class€sand H for input spaceY. Suppose we have an algorith
that for any target functior € C, given a samplex,,...,z,, € X labeled bye, will return a function
h € H consistent with this data. Then for any distributibron X, for anyc € C, for anyd € (0,1/2), if
A is run on a sample af: points drawn i.i.d. fromD and labeled by, then with probability at least — 4,

In(ITy(2m)) + 1n(2/5)>

m

err(h) < k (

for a small constank.

This bound is meaningless if the growth functior2i8. However, as we have seen, it is often much
smaller. The problem with this bound is that the growth function is a tricky quaatitsalculate in general.
For this reason, it is useful to introduce another notion of complexity, thelif@nsion.

2 VC Dimension

We say that a se$ = {x1,...,z,,} of sizem is shatteredby the classH if all possible labelings o5
are achievable by some € . Formally, H shattersS if [I13(S)| = 2™. TheVC dimensiorof # is the
cardinality of the largest sét that can be shattered By.

The VC dimension is convenient because it can be calculated for manyssEslaf interest. To prove
that the VC dimension of a clags is d, it is necessary to 1) give an example of a sef pbints that can be
shattered, and 2) prove that no setiof 1 points can be shattered.

Example 3. Once again, le# be the class of one-dimensional thresholds. It is easy to seé thant can
be shattered, but cannot. ThusV C(#) = 1.

Example 4. Let be the class of one-dimensional intervals. We observetpaints can be shattered, but
3 cannot. (See Figure 2.) ThuEC(H) = 2.

Figure 2: This configuration is not possible
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Figure 3: All the configurations possible
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Figure 4: This configuration is not possible

Example 5. LetH be the class of linear threshold functions in two dimensions.34myints that do not lie
in a line can be shattered.

Note that a set o8 points that lie on the same line cannot be shattered. However, this has unenod
on the VC dimension because we only need there to exist one set ofdmstipat can be shattered.

To prove that the VC dimension is 3, we must show that no set of four paimise shattered. We can
break this down into two cases: First, if one of th@oints lies in the convex hull of the other three, that
point cannot get a different label than the rest, so the points cannohatesed. If no point lies in the
convex hull of the other three, then we can draw a square with the poinkedeur corners. Pick one pair
of points that are diagonally across from each other. It is impossible tol dgse two points + and the
other two -. Therefore, the points cannot be shattered in this case either.

This result extends beyond two dimensions. In fact, it is the case that thdirdénsion of linear

thresholds im-dimensional space is + 1.
VC dimension is useful because of its relationship with the growth function.

Lemma 1. (Sauer’s Lemma) For anyt with finite VC dimensiod,



This lemma is very powerful. It tells us that all hypothesis classes fall intoobtwo categories: 1l
is infinite, thenlly (m) = 2™. The bound in Theorem 1 is then meaningless. On the other hadds if
finite, thenlly (m) = O(m?). In this case, the theorem gives us something very nice $ingey (m)| =
O(dInm). In this case, the error bound is lineardand decreases tbasm goes to infinity.

Using Sauer’s Lemma, it is possible to prove that under the same conditiomsdn Wheorem 1 holds,
if H has VC dimensior, then with probability of at least — 4,

err(h) = O (dlnm+ln(1/5)> |

m
It is also possible to rearrange this bound to show that one can achig¢i@ < e with probability at least
1 — § with a number of examples

1 1 d 1
m:O(log+log>.
€ d € €

Thus the number of examples needed to achievg:) < e scales linearly with the VC dimensiahof
the function class. Intuitively, this result indicates that if one were to ade rfeatures to a model (and
thus increasd), the number of training examples needed to achieve less thaerror scales linearly with
d; each dimension of the model requires at most a constant number of esaimpdarn. Let's digest the
significance of this conclusion in a couple of concrete examples.

Case: 1-dimensional threshold functions
We have established that the VC dimension of one-dimensional threshakibfusmis1l. The bound above
tells us that in order to achieve an error less tharnth high probability, we need

m:O(1 <10g1+10g1>> .
€ ) €

Recall that in Lecture 2, we used the structure of this class to prove thaawachieve the same

guarantee with
1 | 2
m=-In|—<] .
€ 1)

Observe that the bound we achieve using VC Dimension theory is not asiigmot too bad.

Case:n-dimensional linear separators
We said that the VC Dimension afdimensional linear separatorsrist 1. The bound above tells us that
we can achieve error less thawith high probability with

1 1 1 1

m =0 <10g—|— nt log) .

€ ) € €
This follows the intuition in the bad argument we gave earlier, that the numisangbles we need is roughly
linear in the number of parameters.

3 The Unrealizable Setting

The bounds presented here can be extended to the unrealizable setfaig, the sample complexity will
scale withl /2 instead ofl /e. Anyone especially curious about this extension can see Chapter 4aféN
Network Learning: Theoretical Foundations” by Anthony and Bartletaftull derivation of results.



