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1 The Agnostic Setting

Until this point, we have been working under the assumption that there exists a target function c in a known
concept class C that perfectly labels our data. This is not always a valid assumption to make. There could be
random noise in the data, occasionally causing a label to be flipped. It could be the case that there is indeed
a perfect target function, but it is not in the concept class C that we are considering. Or perhaps there is so
much randomness in the labels that no function comes close to labeling all of our data correctly. In light of
this, we would like to remove the assumption of a perfect target function. This is often referred to as the
agnostic learning setting, since we make no assumptions about the origin of the labels. It is also referred to
as the unrealizable setting, to contrast it with the realizable setting we have been studying so far.

We need to update all of our definitions and assumptions for this new setting. Before we assumed that
each input point is drawn i.i.d. from a distribution D and labeled by the target function. We now instead
assume that there exists a joint distribution over pairs of values (~x, y) where ~x is the input point and y is the
corresponding label. In light of this, we need to update our notion of error. Previously we defined error as

err(h) = Pr~x∼D (h(~x) 6= c(~x)) .

We now define it in terms of the joint distribution over (~x, y) pairs, with

err(h) = Pr(~x,y)∼D (h(~x) 6= y) .

Note that this is a strictly more general way to define the error. We can still model a perfect target function
as a joint probability distribution for which the label y is deterministically equal to c(~x) conditioned on the
input ~x.

Next, we must update our goal for this new setting. Previously our goal was to output a function h ∈ H
with err(h) ≤ ε for some small value ε. In the agnostic setting, such a function might not exist. We can
only possibly hope to find a function as good as the best function in H. Therefore, our new goal is instead
to output a function ĥ such that err(ĥ) is close to minh∈H err(h).

Finally, many of our previous results relied on the existence of algorithms that could return a hypothesis
consistent with some data. It is no longer necessarily the case that there is any consistent hypothesis in H,
so we relax this notion as well. Instead, we consider algorithms that return the hypothesis ĥ ∈ H that is
“most consistent” with the data. We measure the extent of the consistency of a hypothesis by its empirical
error on a data set {(~x1, y1), · · · , (~xm, ym)}, which is defined as

êrr(h) =
1

m
|{i : h(~xi) 6= yi}| .
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The empirical error is an unbiased estimate of the true error, in that E[êrr(h)] = err(h). (Exercise:
Convince yourself this is true.)

We consider algorithms that return a hypothesis in H with minimal empirical error, and denote this
hypothesis ĥ.

2 Towards a General Learning Bound in the Agnostic Setting

We would like to derive a general learning bound that holds without the assumption of a perfect target func-
tion. Assume that we have an algorithmA that, given m independent samples from an arbitrary distribution
D (joint over ~x and y), outputs a hypothesis ĥ ∈ H with minimal empirical error. (If there is more than one,
A can choose in any arbitrary way.) We would like to derive a lower bound on m that guarantees that for
any ε, δ ∈ (0, 1/2),

Pr
(
err(ĥ)−min

h∈H
err(h) > ε

)
< δ .

How might we derive such a bound? Well, suppose that we were able to make the following assumption:

∀h ∈ H, |err(h)− êrr(h)| ≤ ε

2
.

If this assumption were true, then for any h ∈ H,

err(ĥ) ≤ êrr(ĥ) +
ε

2
this follows from the assumption

≤ êrr(h) +
ε

2
this follows from the definition of ĥ

≤ err(h) + ε. this follows from the assumption

Since the derivation above holds for any h ∈ H, it must hold for the h that minimizes error, so we have that

err(ĥ) ≤ min
h∈H

(err(h)) + ε.

This tells us that if we are able to make m large enough so that our assumption holds with high proba-
bility, we are effectively done. Below we consider how to do this.

3 Concentration Inequalities and Uniform Convergence

Above we argued that in order to prove an error bound for the agnostic setting, it will be sufficient to show
that the empirical error of a hypothesis approaches its expectation (i.e., the true error of the hypothesis) as
the number of samples grows. This idea is referred to as uniform convergence and can be proved using one
of several concentration inequalities collectively referred to as the Chernoff bounds. The bound that is most
useful for our purposes is Hoeffding’s inequality.

Theorem 1. (Hoeffding’s inequality) Let Z1, Z2, . . . , Zm be independent random variables such that Zi ∈
[ai, bi] for all i. Let p̂ be the empirical mean of these random variables,

p̂ =
1

m

m∑
i=1

Zi
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and let p be its expectation,

p = E[p̂] =
1

m

m∑
i=1

E[Zi].

Then for any ε > 0,
Pr(p− p̂ ≥ ε) ≤ e−2ε2m2/

∑m
i=1(bi−ai)2

and
Pr(p̂− p ≥ ε) ≤ e−2ε2m2/

∑m
i=1(bi−ai)2 .

Applying the union bound, we obtain the following corollary.

Corollary 1. Under the same assumptions on Z1, Z2, . . . , Zm, p, and p̂ as above,

Pr (|p− p̂| ≥ ε) ≤ 2e
−2ε2m2∑m
i=1(bi−ai)

2
.

4 Back to the General Learning Bound

We are now ready to prove a sample complexity bound for the agnostic setting. We start by showing how
many samples we need to guarantee that the assumption above holds with high probability.

Lemma 1. Let {(~x1, y1), · · · , (~xm, ym)} be a set of data points drawn i.i.d. from a distribution D. If

m ≥ 2

ε2

(
ln |H|+ ln

(
2

δ

))
then with probability at least 1− δ, for all h ∈ H, |err(h)− êrr(h)| ≤ ε/2.

Proof: Consider any arbitrary h ∈ H. For i = 1, . . . ,m, define

Zi =

{
1 if h(xi) 6= yi

0 otherwise.

Since êrr(h) = (1/m)
∑m

i=1 Zi and err(h) = E[êrr(h)], we can apply (the corollary to) Hoeffding’s
inequality with p̂ = êrr(h), p = err(h), Z1, . . . , Zm defined as above, ε set to ε/2, and bi − ai = 1 for all
i. This gives

Pr
(
|err(h)− êrr(h)| ≥ ε

2

)
≤ 2e−ε

2m/2.

Applying the union bound, we get

Pr
(
∃h ∈ H : |err(h)− êrr(h)| ≥ ε

2

)
≤ 2|H|e−ε2m/2.

Since we want to show |err(h)− êrr(h)| ≤ ε/2, this is a bound on the probability of failure. We can
compute the condition on the value of m that will make 2|H|e−ε2m/2 ≤ δ. Rearranging terms, we find that
this holds if

m ≥ 2

ε2

(
ln |H|+ ln

(
2

δ

))
.

Combined with the argument that we gave earlier in class, this gives us the following theorem.
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Theorem 2. For any concept class H, suppose that we have access to an algorithm that, given input
{(~x1, y1), · · · , (~xm, ym)} outputs a function ĥ ∈ H with minimal empirical error. Then for any distri-
bution D over input-label pairs, for any ε ∈ (0, 1/2) and δ ∈ (0, 1/2), if A is given access to m pairs
drawn i.i.d. from D with

m ≥ 2

ε2

(
ln |H|+ ln

(
2

δ

))
,

A will output a function ĥ such that with probability ≥ 1− δ, err(ĥ)−minh∈H err(h) ≤ ε.

4.1 Remarks about the General Learning Bound

When we compare the bound on the number of samples for the agnostic case with the bound for the realizable
case, we see that they have a very similar form. The Occam’s razor principle applies here as well. The fewer
hypotheses we have the better because of the ln |H| factor. Note that also we now have ε2 where we used to
have ε. This means that we are paying a penalty of a factor 1/ε by not having a perfect target function.

By solving for ε in the bound we obtained for m and applying it to the inequality we obtained in an
earlier result, we get

err(ĥ) ≤ min
h∈H

(err[h]) +

√
2 ln |H|+ 2 ln (2/δ)

m
.

This gives us an interesting perspective on the effect of the size of the hypothesis class. The first term in
this equation tells us that we want a large hypothesis class because we increase our likelihood of minimizing
the error. However, the second term tells us that a smaller hypothesis class is better because of the Occam’s
razor principle.

Note that way in which the Occam’s razor principle shows up here can be described in terms of over-
fitting. When we have a large H and we try to fit our hypothesis to the data, the likelihood of picking the
wrong hypothesis is larger, so overfitting becomes a bigger issue.
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