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1 A General Bound for Finite Function Classes

Today we begin with a more general result about the PAC model. This result gives us a method of computing
an upper bound on the sample complexity of learning any finite function class. Note that the restriction to
finite function classes excludes the class of one-dimensional threshold functions considered in the previous
lecture, but includes classes like DNFs, conjunctions, or more generally, anything with (multi-dimensional)
binary input.

Theorem 1. Consider any finite concept classes C and H for input space X. Suppose we have an algorithm
A that for any target function ¢ € C, given a sample x1, . .., T, € X labeled by ¢, will return a function
h € H consistent with this data. Then for any distribution D on X, for any ¢ € C, for any € € (0,1/2) and
d € (0,1/2), if Ais run on a sample of m points drawn i.i.d. from D and labeled by c with

m > ! <ln\7-[] +In (1)>
€ o

then with probability at least 1 — 0, A will output a function h such that err(h) < e.

In the proof, we will use the same set of useful facts we used in the proof from the last lecture (the union
bound, the implication bound, and the upper bound on 1 + z).
Proof: Fix any distribution D on X, target ¢ € C, and parameters € and §. Let i be the function that is
output by A after receiving m random samples as input.

We will call a hypothesis b’ € H “bad” if err(h') > e. Let B := {h’ € H : err(h’) > €} denote the
set of bad hypotheses. We begin by making the (obvious) observation that if err(h) > ¢, then it must be
the case that there exists some i’ € B such that &’ is consistent with our sample of m points; A itself is one
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example, and there could be many more. This implies that

Pr(err(h) > €) < Pr(3h' € B such that 1’ is consistent with the sample)

< Z Pr(h’ is consistent with the sample) (union bound)
h'eB

= Z Pr (1 (z1) = c(@1) Ao AN (@) = c(zm)) (definition of consistency)
h'eB

= Z HPr (W' (zi) = c(z)) (the sample is i.i.d.)
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By a similar argument to the one we used in the last lecture, we can guarantee that this value is small
(no greater than §) by choosing an appropriately large sample:

|Hle™™ <6 <= m > %(lnm\ +1In(1/9)) .

0
This result shows a relationship between the size of H and the parameters we have been examining thus
far: m, €, and 9. In particular, small 7 are favorable in the sense that a smaller sample size is necessary
to achieve a given level of ¢ and e. This principle is known as “Occam’s Razor” — simple is better. This is
fairly intuitive. If H is large, then it is more likely that there will be a hypothesis with high error that just
happens to agree with the sample by luck. In this case, we need a large number of examples to rule out those
hypotheses. In contrast, if H is small, then a consistent hypothesis is more likely to actually have low error.
Note that this bound does not say anything explicitly about the efficiency of A.

2 Applying the General Learning Bound

Since the general learning bound applies when we have algorithms that return consistent hypotheses, we can
use this result to investigate the algorithms that we studied under the consistency model. In particular, we
can try to see what learnability of a class under the consistency model tells us about learnability of the class
under the PAC model.

If we have a class that is learnable under the consistency model this means that there is an algorithm for
that class that returns a consistent hypothesis if one exists. If C C H, then under our assumptions, we are
guaranteed that there will always be at least one consistent hypothesis in . We can immediately apply this
result to bound the sample complexity of the concept classes we discussed.

2.1 The Class of Monotone Conjunctions

Consider the class of monotone conjunctions. We showed earlier that this is learnable under the consistency
model. For this hypothesis class we have |C| = 2" when the input size is n. This gives us a sample



complexity of

ol (5))

Treating n as fixed (for now), this means that a polynomial (in 1/e and 1/§) number of samples will do to
get a good enough hypothesis with high enough probability. Therefore the class of monotone conjunctions
with n variables is PAC learnable (using the class of monotone conjunctions with n variables). Since the
algorithm we discussed for monotone conjunctions is polynomial in the number of examples and n, it is also
efficiently PAC learnable.

2.2 The Class of DNF's

Consider the class of DNFs. Here we have |C| = 22", so we get a sample complexity bound of

oo (5)))

We could treat n as fixed and claim that this class is PAC learnable too, but that is a little unsatisfying. It
doesn’t seem fair to allow the sample complexity to grow exponentially in n. To handle this concern, we
make some important additions to our preliminary definition of PAC learning.

3 PAC Learning: Modified Definition

As the previous example illustrated, it would be useful to incorporate some notion of the size or dimension
of the input space X into the definition of PAC learning. For example, if X = {0, 1}", as it does when
we consider learning conjunctions or DNFs, the size of the input space can be defined naturally as n. This
is also true when X = R". In the spirit of our computational outlook and asymptotic approach, it would
be nice to be able to treat n as a parameter of the learning problem (like € and §) and require that sample
complexity and running time be polynomial in n in addition to 1/e and 1/4. Since our input space will
almost always be {0, 1}" or R", we introduce a modified definition of PAC learning below that is tailored
to this notion of dimension.

Going back to the example of DNFs, it may be too strong of a requirement to force that running time be
polynomial in n. For some particular functions, the number of terms in a minimal DNF could be as many
as 2". If this is true for the target function, then it would not even be possible to write down the target
function in time polynomial in n. For this reason, in our modified definition, we allow the algorithm sample
complexity (and time complexity, for efficient learning) polynomial in both n and the size of the true target
function c. In this class we won’t discuss this last point in too much detail, but you can think of size(c) as
roughly the number of bits required to represent the function c. (Curious students can read more about this
in Chapter 1.2.2 of Kearns & Vazirani.)

In the following definition, for every n > 1, let each C, and H,, be sets of functions mapping the
input space A&, (which will typically be {0,1}" or R™) to {0,1}. Let C = Up>1Cp, H = Up>1Hyp, and
X = UnZan-

Definition 1 (Modified definition of PAC learning). An algorithm A PAC-learns C using H if for anyn > 1,
for any ¢ € Cy, for any distribution D over X, for any € € (0,1/2) and 6 € (0,1/2), given access to a
polynomial (in 1/€, 1/, n, and size(c)) number of examples drawn i.i.d. from D and labeled by ¢, A outputs
a function h € H,, such that with probability at least 1 — 6, err(h) < e.



This modification is important if we want to capture the idea of generalizability in our model and rule
out algorithms that simply memorize the data. If our input space is {0,1}" then we could always find a
hypothesis with low error with O(2") examples, but this wouldn’t be a very interesting notion of “learning.”

3.1 Back to DNFs

Let’s return to DNFs. By the modified definition, a PAC algorithm for learning DNFs would be allowed
a number of samples polynomial in n and the number of terms in the minimal DNF representation of the
target c. For some particular functions, the number of terms in a minimal DNF could be as many as 2", in
which case we would allow the algorithm time exponential in the size of an example. However, for many
simpler target functions, the size of the representation is much smaller, in which case we would not allow
this exponential dependence. Since the algorithm must run in polynomial time in these parameters for every
¢ € C, the general bound for finite classes does not imply PAC learnability of DNFs.

This does not tell us that the class is not PAC learnable, since the bound is not a tight bound. It only
shows that we cannot use the general learning bound to show PAC learnability. The question of whether this
class is PAC learnable or not has been an open problem for more than two decades.



