
CS260: Machine Learning Theory
Lecture 16: SVMs and Kernels

November 16, 2011

Lecturer: Jennifer Wortman Vaughan

1 Examining the Dual

In the last lecture, we derived a primal standard form convex optimization problem that can be solved to
obtain the threshold functionh(~x) = sign(~w · ~x + b) that maximizes the margin of a set of data points
(~x1, y1), · · · , (~xm, ym):

min
~w,b

1

2
||~w||2

s.t. 1− yi(~w · ~xi + b) ≤ 0, i = 1, ...,m.

We also derived the dual of this problem:

max
~α

m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

yiyjαiαj~xi · ~xj

s.t. αi ≥ 0, i = 1, ...,m
m
∑

i=1

αiyi = 0.

Since the primal problem is convex (i.e., has a convex objective function and convex inequality con-
straints), we know that solving the primal is equivalent to solving the dual. Wealso know that any optimal
solution ~w∗, b∗, α∗ must satisfy the KKT conditions. Let’s see what the KKT conditions tell us about the
solutions.

• Stationarity:

Stationarity tells us that the partial derivatives of the Lagrangian with respect to ~w andb must be0 at
the optimal solution. As we saw in the last lecture, this implies that

~w∗ =
m
∑

i=1

α∗
i yi~xi ,

and
m
∑

i=1

α∗
i yi = 0 .

All CS260 lecture notes build on the scribes’ notes written by UCLA students inthe Fall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of themcontain errors. If you spot an error, please email Jenn.

1

The first equation here tells us how to back out the optimal value~w∗ of the weights~w once we have
solved the dual to obtain the optimal value~α∗ for ~α. In particular, the optimal weight vector will be a
weighted combination of input points, similar to the weights output by the Perceptron algorithm.

(In order to obtain our classifier, we will need to back out the optimal value of b as well. Let’s hold
off on the question of how to do this for a moment, and examine what the other KKT conditions tell
us about the solution to this problem...)

• Primal Feasibility:

Primal feasibility tells us that all primal constraints must be satisfied. In this case, it implies that for
all data pointsi ∈ {1, · · · ,m},

yi(~xi · ~w
∗ + b∗) ≥ 1 ,

or

yi
~xi · ~w

∗ + b∗

||~w∗||
≥

1

||~w∗||
.

In other words, we must have a margin of at least1/||w∗|| on the training data.

• Dual Feasibility:

Primal feasibility tells us that all dual constraints must be satisfied, or for alli ∈ {1, · · · ,m}, α∗
i ≥ 0.

This makes sense. It tells us that our weight vector~w∗ will only ever put positive or zero weight on
positively labeled points, and negative or zero weight on negatively labeled points.

• Complementary Slackness:

The implications of this condition are rather interesting. In particular, we get that for alli ∈ {1, · · · ,m},

α∗
i (yi(~w

∗ · ~xi + b)− 1) = 0.

Stated another way, for every input point~xi, at least one of the corresponding primal constraint and the
corresponding dual constraint must be tight, i.e., we must have eitherαi = 0 or yi(~xi · ~w∗ + b∗) = 1.

This implies that the only input points that contribute to the weight vector are those with minimal
margin, i.e., those pointsxi such thatyi(~xi · ~w∗ + b∗) = 1. These points are referred to assupport
vectors. The number of support vectors is typically much smaller than the number of data pointsm,
as in Figure 1.

Note that this also gives us a way to solve for the optimal valueb∗. We know that for any data point
xi with αi > 0, we must have

b∗ = 1/yi − ~xi · ~w
∗ = yi − ~xi · ~w

∗.

In practice, different pointsxi might give slightly different values ofb∗, so it is common to average
over all of the support vectors.

2

Support Vectors

Linear Seperator

Figure 1: The support vectors are the input points with minimal margin. Only these points contribute to the
weight vectors~w∗.

2 Solving The Dual Problem

Many different techniques can be used to solve the dual problem. We briefly discuss the main idea behind
one common hill-climbing technique, Sequential Minimization Optimization (SMO). For full details on this
algorithm, check out John Platt’s book chapter, available for free online.1

First, suppose we want to solve anunconstrained optimization problem of the formmax~α f(~α) for some
concave functionf . A common technique for doing this is to use a coordinate ascent algorithm. There are
different ways to specify the details of coordinate ascent, but the general outline is as follows:

Initialize ~α
Repeat until convergence

Choose somei
Set αi = argmax

α̂

f(α1, ..., αi−1, α̂, αi+1, ..., αm)

Unfortunately, we can’t apply coordinate ascent directly to the dual problem because of the stationarity
condition which tells us that

αi = −
m
∑

j 6=i

αjyiyj .

This condition tells us that there is only one possible value for theith component of~α given all of the other
components, so we can’t optimize components separately.

The SMO algorithm gets around this problem by choosing apair of components,αi andαj , at each
time step, and optimizing themtogether while maintaining the stationarity constraint. We can easily test for
convergence by checking if the KKT conditions are satisfied up to some tolerance parameter.

1http://research.microsoft.com/apps/pubs/?id=68391

3

3 No Perfect Target

So far we have assumed that the data is linearly separable, i.e., that it can beclassified perfectly by a linear
separator. It turns out that it is easy to modify the optimization so that it still gives us something reasonable
even when there is no perfect target.

3.1 The Soft Margin Approach

In the soft margin approach, we introduce a set of “slack variables”µ1, · · · , µm, to relax the margin con-
straint. Our optimization problem becomes:

min
~w,b,~µ

1

2
||~w||2 + C

m
∑

i=1

µi

s.t. yi(~w · ~xi + b) ≥ 1− µi, for i = 1, ...,m

µi ≥ 0, for i = 1, ...,m

whereC is a parameter of the algorithm. This allows for occasional failure of the margincondition (i.e.,
data points for whichyi(~w ·~xi+b) < 1), but we pay a price in the objective function each time this happens.

It is easy to see that when the optimal solution is found, we have

µi = max(0, 1− yi(~w · ~xi + b)) .

This is (a scaled version of) the hinge loss for theith data point. We can therefore think of this problem
as minimizing a weighted combination of a loss term and a regularization term, as we have done before.
However, now it is hinge loss that we are minimizing.

We can derive a new dual optimization from the SVM with soft margin:

max
~α

m
∑

i=1

αi −
1

2

m
∑

i,j=1

yiyjαiαj~xi · ~xj

s.t. 0 ≤ αi ≤ C, i = 1, ...,m.
m
∑

i=1

αiyi = 0 .

The derivation is similar to the derivation above, and the dual problem itself issimilar to the dual we
derived without the slack variables. We now have the additional constraints thatαi ≤ C, but this problem is
just as easy to solve. This is good news! To handle data that isn’t linearly separable, we only have to slightly
modify our original problem and the same hill climbing techniques work.

This soft max dual optimization problem is what people typically mean when they refer to the SVM
algorithm. This will give good results if the data is “almost” linearly separable.

4 The Kernel Trick

Although the soft margin approach works for data that is close to linearly separable, it returns poor results
when data is not close, such as in Figure 2.

4

Negative Points

Positive Points

Figure 2: There is no linear separator that can approximately distinguish thepositive data points from the
negative data points.

Although this data is clearly not linearly separable, we cantransform it into something that is. In
particular, suppose that we represent a data point~x as

~x =

[

x1
x2

]

.

We could (almost) separate this data with a function of the form

(x1 − p)2 + (x2 − q)2 ≤ r2 ,

or
x21 − 2px1 + x22 − 2qx2 ≤ r2 − p2 − q2 .

Suppose we transformed the original data point to the following form, using the feature mapping function
φ:

φ(~x) =

x1
x2
x21
x22

.

We can see that this new feature space is (close to) linearly separable! Sowe could run the SVM algorithm
on these new features instead.

4.1 Kernel Functions

Suppose that we wanted to apply the SVM algorithm to transformed data points((φ(~x1), y1), · · · , (φ(~xm), ym))
for some mappingφ. Let’s think about how the optimization would change. We’ll consider the basic version
for simplicity, but the same ideas apply for the soft margin version.

The dual optimization problem depends on the input points only through the dot products~xi · ~xj . We
could replace these terms withφ(~xi) · φ(~xj).

5

What about our final classifier? The label of a new point~x can be classified as

sign(~w∗ · φ(~x) + b∗) = sign

(

m
∑

i=1

α∗
i yiφ(~xi) · φ(~x) + yℓ − ~w∗ · φ(~xℓ)

)

= sign

(

m
∑

i=1

α∗
i yiφ(~xi) · φ(~x) + yℓ −

m
∑

i=1

α∗
i yiφ(~xi) · φ(~xℓ)

)

for some support vectorφ(~xℓ). So in order to classify our data points, we also need only to be able to
compute the dot product between pairs of transformed vectors.

It turns out that this observation is very powerful, and allows us to work with very large or even infinite
vectors of transformed features. Given a mappingφ, we define the correspondingKernel function K on
data points~x and~z as

K(~x, ~z) = φ(~x) · φ(~z) .

Since both the SVM optimization problem and the resulting classifier only handle data through dot products
of data points, even if computingφ(~x) is inefficient, the SVM algorithm can still be run efficiently as long
as we can compute the kernel function efficiently.

We’ll see some examples of kernels in the next lecture.

6

