CS260: Machine Learning Theory
Lecture 16: SYMsand Kernels
November 16, 2011

Lecturer: Jennifer Wortman Vaughan

1 Examiningthe Dual

In the last lecture, we derived a primal standard form convex optimizatiololggm that can be solved to
obtain the threshold functioh(z) = sign(w - & + b) that maximizes the margin of a set of data points

(fbyl); T (fmvym)
1
min f||u7\|2
2
st. 1—y(W-2;+b) <0, i=1,..,m.
We also derived the dual of this problem:

m 1 m m
mJ:::lX Z oy — 5 Z Z y,'yjoziaja_c’,- . fj
=1

i=1 j=1
st. >0, 1=1,...m

m
Z a;y; = 0.
i=1

Since the primal problem is convex (i.e., has a convex objective functidrcanvex inequality con-
straints), we know that solving the primal is equivalent to solving the dualaMéknow that any optimal
solutionw™*, b*, o* must satisfy the KKT conditions. Let's see what the KKT conditions tell usiabte
solutions.

e Stationarity:

Stationarity tells us that the partial derivatives of the Lagrangian with ct$p@ andb must be0 at
the optimal solution. As we saw in the last lecture, this implies that

m
@ =Y ey,
=1
and

m
Zafyi =0.
i=1

All CS260 lecture notes build on the scribes’ notes written by UCLA studettteifrall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of thatain errors. If you spot an error, please email Jenn.

The first equation here tells us how to back out the optimal vatuef the weightsi once we have
solved the dual to obtain the optimal vald@&for &. In particular, the optimal weight vector will be a
weighted combination of input points, similar to the weights output by the Pecregalgorithm.

(In order to obtain our classifier, we will need to back out the optimal vafueas well. Let’s hold
off on the question of how to do this for a moment, and examine what the oth&rdéKditions tell
us about the solution to this problem...)

Primal Feasibility:

Primal feasibility tells us that all primal constraints must be satisfied. In this ¢aselies that for
all data points € {1,--- ,m},
yz(fz -t +b*) >1,
or -
i - w* + b 1
1|

In other words, we must have a margin of at leg8tw*|| on the training data.

Yi

Dual Feasibility:

Primal feasibility tells us that all dual constraints must be satisfied, or foraf1, - -- ,m}, off > 0.
This makes sense. It tells us that our weight veaibmwill only ever put positive or zero weight on
positively labeled points, and negative or zero weight on negativelyddipoints.

Complementary Slackness:
The implications of this condition are rather interesting. In particular, we gefdhall: € {1,--- ;m},

o (yi(w* - & +b) — 1) = 0.

Stated another way, for every input paiit at least one of the corresponding primal constraint and the
corresponding dual constraint must be tight, i.e., we must have either0 or y; (Z; - W* + b*) = 1.

This implies that the only input points that contribute to the weight vector are tivith minimal
margin, i.e., those points; such thaty;(z; - W* + b*) = 1. These points are referred to augpport
vectors. The number of support vectors is typically much smaller than the numbetapdatsm,
as in Figure 1.

Note that this also gives us a way to solve for the optimal vaiuaVe know that for any data point
x; With o; > 0, we must have

—%

V' =1/y; — & - 0" =y — T -0

In practice, different pointg; might give slightly different values df*, so it is common to average
over all of the support vectors.

Figure 1: The support vectors are the input points with minimal margin. Ongetpeints contribute to the
weight vectorss*.

2 Solving The Dual Problem

Many different techniques can be used to solve the dual problem. Wy lahigcuss the main idea behind
one common hill-climbing technique, Sequential Minimization Optimization (SMO). Hbdétails on this
algorithm, check out John Platt’'s book chapter, available for free orline.

First, suppose we want to solve amconstrained optimization problem of the forraxg f (&) for some
concave functiory. A common technigue for doing this is to use a coordinate ascent algorithme ate
different ways to specify the details of coordinate ascent, but the glemdttine is as follows:

Initialize &
Repeat until convergence
Choose some
Setq; = arg max floq, ooy i1, Gy Qg 1y oy Qi)
(03
Unfortunately, we can’t apply coordinate ascent directly to the duddlpno because of the stationarity
condition which tells us that

m
Q== ;-
J#i
This condition tells us that there is only one possible value foittheomponent o& given all of the other
components, so we can’t optimize components separately.
The SMO algorithm gets around this problem by choosirgia of componentsq; anda;, at each
time step, and optimizing themmgether while maintaining the stationarity constraint. We can easily test for
convergence by checking if the KKT conditions are satisfied up to someatmemparameter.

lhttp://research. nmcrosoft. conf apps/ pubs/ ?i d=68391

3 No Perfect Target

So far we have assumed that the data is linearly separable, i.e., that it clas$iged perfectly by a linear
separator. It turns out that it is easy to modify the optimization so that it stisgiss something reasonable
even when there is no perfect target.

3.1 The Soft Margin Approach

In the soft margin approach, we introduce a set of “slack variahles”- - , i1, to relax the margin con-
straint. Our optimization problem becomes:

1 m
. =112
min = +C ;
min, gllal? + O3

S.t. yl(w:fﬁ—b) >1—yp, fori=1,..m
>0, fori=1,..,m

whereC' is a parameter of the algorithm. This allows for occasional failure of the maagidition (i.e.,
data points for whichy; (- Z; +b) < 1), but we pay a price in the objective function each time this happens.
It is easy to see that when the optimal solution is found, we have

Wi = maX(O, 1-— yz(zﬁ - T + b)) .

This is (a scaled version of) the hinge loss for itiedata point. We can therefore think of this problem
as minimizing a weighted combination of a loss term and a regularization term, aawealbne before.
However, now it is hinge loss that we are minimizing.

We can derive a new dual optimization from the SVM with soft margin:

m 1 m
m@x E a; — — E yiyjaiajxi . :cj
a , 2 £
=1 7,0=1

st. 0<a;<C, i=1,..,m.
m
Zaiyi =0.
i=1

The derivation is similar to the derivation above, and the dual problem itssifmiar to the dual we
derived without the slack variables. We now have the additional contstithiata; < C, but this problem is
just as easy to solve. This is good news! To handle data that isn’t linesgoéyable, we only have to slightly
modify our original problem and the same hill climbing techniques work.

This soft max dual optimization problem is what people typically mean when #ifey to the SVM
algorithm. This will give good results if the data is “almost” linearly separable.

4 TheKernd Trick

Although the soft margin approach works for data that is close to lineapigrable, it returns poor results
when data is not close, such as in Figure 2.

= Positive Points
— Negative Points

Figure 2. There is no linear separator that can approximately distinguigiotiive data points from the
negative data points.

Although this data is clearly not linearly separable, we transform it into something that is. In
particular, suppose that we represent a data poas

We could (almost) separate this data with a function of the form

(x1 —p)* + (22 — ¢)* < r?,
or
x%—2px1+x§—2qaﬂg§r2—p2—q2.

Suppose we transformed the original data point to the following form, usmdgetiture mapping function

¢:

</>(f) = 2

We can see that this new feature space is (close to) linearly separabed Gmld run the SVM algorithm
on these new features instead.

4.1 Kerne Functions

Suppose that we wanted to apply the SVM algorithm to transformed data p@is), y1), - - - , ((Zm), Ym))
for some mapping. Let’s think about how the optimization would change. We'll consider thechassion
for simplicity, but the same ideas apply for the soft margin version.

The dual optimization problem depends on the input points only through therdductsz; - ;. We
could replace these terms withz;) - ¢(Z;).

What about our final classifier? The label of a new paictin be classified as
sign(w” - ¢(Z) +b*) = sign (Z a;yip(Zi) - (L) + ye — 0" - eb(fe))
i=1

= sign (Z QGyid () - $(T) +ye — Y aiyid(d) - <z><fe>>

=1 =1

for some support vectap(z,). So in order to classify our data points, we also need only to be able to
compute the dot product between pairs of transformed vectors.

It turns out that this observation is very powerful, and allows us to wattk very large or even infinite
vectors of transformed features. Given a mappingve define the correspondingernel function K on
data pointst andz as

K(Z,2) = ¢(Z) - ¢(2) -

Since both the SVM optimization problem and the resulting classifier only haatietttrough dot products
of data points, even if computing(%) is inefficient, the SVM algorithm can still be run efficiently as long
as we can compute the kernel function efficiently.

We’'ll see some examples of kernels in the next lecture.

