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1 Road Map

During our discussion of AdaBoost, we saw that large margin classifiers lead to low generalization error.
Given this observation, one might ask if it is possible to design a learning algorithm that explicitly maximizes
the margin of the training data. This is the idea behind Support Vector Machines (SVMs), which maximize
the margin directly using techniques from convex optimization.

We begin this lecture with a review of the necessary ideas from optimization, and then go on to define
the primal form of the SVM algorithm. In the next lecture, we will derive the dual form of the algorithm,
which turns out to be useful. We will also see how to extend the algorithm to handle data that cannot be
classified perfectly with a linear separator.

For a much more thorough introduction to convex optimization, check out Boyd and Vandenberghe’s
great book, which is available for free online,1 or take Vandenberghe’s class here at UCLA.

2 Basics of Convex Optimization

We say that an optimization problem is in standard form if it is possible to write it as

min
~w

f(~w)

s.t. gi(~w) ≤ 0, i = 1, ..., k

hi(~w) = 0, i = 1, ..., `

for some objective function f , inequality constraints gi(~w) ≤ 0, i = 1, ..., k, and equality constraints
hi(~w) = 0, i = 1, ..., `.

We say that a standard form problem is convex if f is convex, each of the functions gi is convex, and
each of the functions hi is affine, i.e., can be written as hi(~w) = ~z · ~w + b for some ~z and b.2

Convex standard form optimization problems are nice because they can be solved efficiently using a
variety of different techniques including the subgradient method, the interior point method, and the ellipsoid
method (which we unfortunately will not have time to discuss in this class). We will refer to a problem of
this form as our primal problem.

All CS260 lecture notes build on the scribes’ notes written by UCLA students in the Fall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of them contain errors. If you spot an error, please email Jenn.

1http://www.stanford.edu/˜boyd/cvxbook/bv_cvxbook.pdf
2This is different from the definition given in class, where we said that “standard form” implies that f and gi are convex and hi

affine, but as some people pointed out, it is more common in references to see “standard form” defined as it is here now.
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The Lagrangian of an optimization problem is defined as

L(~w, ~α, ~β) = f(~w) +
k∑
i=1

αigi(~w) +
l∑

i=1

βihi(~w) ,

and the components of ~α and ~β are referred to as Lagrange multipliers. Let’s think about the value

max
~α,~β:αi≥0

L(~w, ~α, ~β) = max
~α,~β:αi≥0

(
f(~w) +

k∑
i=1

αigi(~w) +

l∑
i=1

βihi(~w)

)
.

First consider the case in which the primal constraints are met. In this case, the Lagrangian is maximized
when we set each αi to 0. Each βi can be set arbitrarily since hi(~w) = 0. In this case, the second and third
terms of the Lagrangian are 0, and we’re left with just f(~w). What if the primal constraints are not met. In
this case, it is easy to verify that maximal value is infinite. We therefore have that

max
~α,~β:αi≥0

L(~w, ~α, ~β) =

{
f(~w) : if the primal constraints are satisfied
∞ : otherwise.

Because of this, the primal optimization problem is equivalent to the following:

min
~w

max
~α,~β:αi≥0

L(~w, ~α, ~β) .

We can define what is called the dual optimization problem, by switching the min and max:

max
~α,~β:αi≥0

min
~w

L(~w, ~α, ~β) .

Let’s see how these problems are related. It is easy to show that

max
~α,~β:αi≥0

min
~w

L(~w, ~α, ~β) ≤ min
~w

max
~α,~β:αi≥0

L(~w, ~α, ~β) .

This has nothing to do with the form of the Lagrangian; the “max min” is always less than or equal to the
“min max,” a fact that was used in the proof of the Minimax Theorem.

What is more surprising is that for standard form problems that are convex (i.e., have convex f and gi
and affine hi) if it is the case that for all i, there exists some ~w such that gi(~w) < 0, then these two quantities
are actually equal.

2.1 KKT Conditions

Suppose we have an optimization problem in standard form that is convex, and that for all i, there exists
some ~w such that gi(~w) < 0. We know in this case that optimal value of the primal problem is equal to the
optimal value of the dual problem. It turns out that particular values of ~w∗, ~α∗ and ~β∗ are solutions to these
optimization problems if and only if they satisfy the following conditions.
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The KKT Conditions:

• Stationarity:
∂

∂wi
L(~w∗, ~α∗, ~β∗) = 0 i = 1, ..., n

• Primal Feasibility:

hi(~w
∗) = 0 i = 1, ..., l

gi(~w
∗) ≤ 0 i = 1, ..., k

• Dual Feasibility:
~α∗ ≥ 0 i = 1, ..., k

• Complementary Slackness:
α∗i gi(~w

∗) = 0 i = 1, ..., k

This final condition will be important later when we talk about the dual of the SVM problem.

3 Maximizing the Margin

Consider a linear threshold function of the form y = sign(~w · ~x+ b), where ~w is the weight vector and b is
the intercept (signifying that the threshold function may not pass through the origin). The (L2) margin of a
labeled point (~x, y) with respect to this threshold is given by

y
~w · x+ b

||~w||
.

Intuitively, the larger the margin of a point is, the higher our “confidence” that the point belongs to a certain
class should be.

Assume we have m separable points (~x1, y1), (~x2, y2), . . . (~xm, ym), i.e., m labeled points for which
there exists a consistent linear separator. Given these training samples, we would like to find a classifier that
maximizes the value of the margin. We can attempt to formulate this problem as a standard form convex
optimization problem as follows:

max
γ,~w,b

γ

s.t. yi
~w · ~xi + b

||~w||
≥ γ, i = 1, ...,m

We have a max instead of a min here, but that problem alone would be easy to fix. The bigger problem is
the presence of the term 1/||~w|| in the inequality constraints. This term is not convex, meaning that we could
not use convex standard form solvers for this problem. So, let’s attempt to reformulate this optimization
problem to get rid of this annoying constraint.
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We can get this term out of the inequality constraints by defining a new variable γ′ = γ||~w||, and
rewriting the optimization in terms of this new variable. We have

max
γ′, ~w,b

γ′

||~w||
s.t. yi(~w · ~xi + b) ≥ γ′, i = 1, ...,m

The inequality constraints are looking nicer, but we still have this annoying term in our objective. How-
ever, it can be removed. As a first step, suppose that γ′ = γ∗, ~w = ~w∗, and b = b∗ is a solution to this
problem. Then γ′ = 1, ~w = ~w∗/γ∗ and b = b∗/γ∗ must also be a solution. (Verify this for yourself.) Us-
ing this, we can reformulate our optimization problem, removing γ′ entirely, without missing any potential
solutions. We get:

max
~w,b

1

||~w||
s.t. yi(~w · ~xi + b) ≥ 1, i = 1, ...,m

This will make our solution unique, which is useful.
To get this in the form we need, we rewrite it one last time as an equivalent problem:

min
~w,b

1

2
· ||~w||2

s.t. 1− yi(~w · ~xi + b) ≤ 0, i = 1, ...,m

We now have the optimization problem in the form we want! Note that we could have minimized ||~w||
instead, but it turns out this form will be more convenient. Furthermore, since the objective function is
quadratic and we have linear inequality constraints, this convex optimization problem could be solved using
any standard quadratic programming technique.

If we wanted, we could stop at this point and call ourselves done. However, it turns out that the dual of
this problem satisfies a number of nice properties (in particular, it is easy to solve, and will allow us to use
the “kernel trick” which will be described in the next lecture). We now derive the dual.

4 Deriving the Dual

As we saw above, the dual problem is defined as

max
~α:αi≥0

min
~w,b

L(~w, b, ~α).

Note that we dropped the dependence on ~β since we only have inequality constraints and no equality con-
straints.

We will derive a more convenient form in three steps. The first step is to calculate the value of the
Lagrangian function by plugging in our objective function and constraints. This gives us

L(~w, b, ~α) = f(~w, b) +

m∑
i=1

αigi(~w, b)

=
1

2
||~w||2 +

m∑
i=1

αi(1− yi(~w · ~xi + b)) . (1)
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The next step is to find the minimum value of the Lagrangian for any fixed value of ~α. Because the
Lagrangian is convex, the minimum occurs when the partial derivatives are equal to 0. Setting the partial
derivatives with respect to the components of ~w to 0 gives us

~w =
m∑
i=1

αiyi~xi.

Setting the partial with respect to b to 0 gives us a constraint that

m∑
i=1

αiyi = 0 .

By plugging these values into Equation 1, we get

min
~w,b

L(~w, b, ~α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

yiyjαiαj~xi · ~xj .

By maximizing this expression with respect to ~α and applying the constraint we derived from the partial
derivatives, we obtain the dual form of the problem.

max
~α

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

yiyjαiαj~xi · ~xj

s.t. αi ≥ 0
m∑
i=1

αiyi = 0

This version of the problem is easy to solve. Additionally, it only depends on the ~xi through dot products
of the form ~xi · ~xj , so it can be used with the kernel trick, which we will talk about next time.
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