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1 A First Attempt to Bound the Generalization Error of AdaBoost

We saw last time that the training error of AdaBoost decreases exponentially as the number of rounds T
grows. However, this says nothing about how well the function output by AdaBoost performs on new
examples. Today we will discuss the generalization error of AdaBoost.

We know that AdaBoost gives us a consistent function quickly; the bound we derived on training er-
ror decreases exponentially, and once this bound drops below 1/m, we know we must have a consistent
function. Because of this, if we were able to find the VC dimension of the class of functions from which
AdaBoost chooses, we’d be able to apply our results from the first few weeks of class to get a bound on
generalization error.

LetH be the class of functions from which the weak learning algorithm A chooses, and let d be the VC
dimension of this class. The class of functionsH′ from which AdaBoost chooses is the class of all functions
h that can be written as

H′ =

{
h : h(~x) = sign

(
T∑
t=1

αtht(~x)

)
with ht ∈ H, αt ∈ R, for all t

}
.

Note that this class is infinite even ifH is finite since each αt is a real-valued parameter.
It is possible to show (though we will not do it here) that the VC dimension of this class H′ is Õ(Td),

where the Õ notation hides log terms. This implies that with high probability, for any h ∈ H′,

err(h) ≤ êrr(h) + Õ

(√
Td

m

)
.

Let’s examine this bound. We know that as T grows, the training error of the function output by AdaBoost
shrinks. However, at the same time,H′ becomes more complex and the second term in this bound increases.
We would expect to find that there is an optimal value of T that optimizes this trade-off to minimize err(h).

Somewhat surprisingly, people have found that in practice, err(h) continues to decrease even after
êrr(h) reaches 0. This is good news in the sense that overfitting does not occur as T increases, but it seems
to contradict the intuition conveyed by the bound above. It turns out that this phenomenon can be explained
by analyzing the “confidence” of the function h, which may continue to increase over time even after the
training error has hit zero.

All CS260 lecture notes build on the scribes’ notes written by UCLA students in the Fall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of them contain errors. If you spot an error, please email Jenn.
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2 Existence of Large Margin Classifiers

We’ve talked about the “confidence” of classifiers before when we talked about the margin of a linear
separator. Recall that we defined the margin of a point ~xi with respect to a linear separator with weights ~w
as

yi
~w · ~xi
||~w||2

.

We can define a notion of “margin” for the AdaBoost function too. Instead of defining it in terms of
the actual input points ~x, we will define it in terms of the T -dimensional point 〈h1(~xi), · · · , hT (~xi)〉. Also,
instead of normalizing with respect to the L2 norm of the weights as we did before, it turns out to be more
convenient to normalize with respect to the L1 norm. We define the margin of a labeled point (~xi, yi) with
respect to the function h output by AdaBoost as

yi

∑T
t=1 αtht(~xi)∑T

t=1 αt
.

Note that this definition does not have exactly the same geometrical interpretation as the notion of margin
we discussed before since we are normalizing using the L1 norm. However, this alternative definition of
margin has similar meaning, in that a larger margin implies higher confidence.

In Theorem 2, we show that if the weak learning assumption holds, then there must exist a large L1-
margin classifier of the form h(~x) = sign(

∑T
t=1 αtht(~x)). The proof is based on the Minimax Theorem,

which we proved in Lecture 12. We restate it here, in slightly different notation than the way it was originally
stated. (It is easy to verify that this statement is equivalent; we’ve just switched around some variable
names.)

Theorem 1 (Minimax Theorem). For any m× n matrix M ,

max
~p∈∆m

min
~q∈∆n

n∑
i=1

m∑
j=1

piqjMi,j = min
~q∈∆n

max
~p∈∆m

n∑
i=1

m∑
j=1

piqjMi,j .

For simplicity, we prove the theorem for finiteH, but it can be extended.

Theorem 2. Consider a finite function class H = {h1, · · · , hn} and a set of labeled points
(~x1, y1), ..., (~xm, ym). Suppose that for some γ > 0, for every distribution ~p ∈ ∆m, there exists an h ∈ H
such that

m∑
i=1

piI(h(~xi) 6= yi) ≤
1

2
− γ.

Then there exists ~q ∈ ∆n such that

min
i∈{1,··· ,m}

n∑
j=1

qjhj(~xi)yi ≥ 2γ .

We can interpret ~p as a distribution over input points and ~q as a weighting over the functions in H (like
~α will be). The result then says that if the weak learning assumption holds then there exists a function
h(~x) = sign(

∑n
j=1 qjhj(xi)) that has a margin of at least 2γ. Note that we are not yet showing that
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AdaBoost increases the margin over time, just that a large margin function exists.

Proof of Theorem 2: We start by defining an m× n matrix M with entries

Mij = I(hj(~xi) 6= yi) .

Fixing any ~p ∈ ∆m, we have:

min
~q∈∆n

m∑
i=1

n∑
j=1

piqjMij = min
~q∈∆n

m∑
i=1

n∑
j=1

piqjI(hj(~xi) 6= yi)

= min
~q∈∆n

n∑
j=1

qj

m∑
i=1

piI(hj(~xi) 6= yi)

= min
j∈{1,··· ,n}

m∑
i=1

piI(hj(~xi) 6= yi)

≤ 1

2
− γ .

Since this holds for any distribution ~p, we have

max
~p∈∆m

min
~q∈∆n

m∑
i=1

n∑
j=1

piqjMij ≤
1

2
− γ .

By the Minimax Theorem, this implies that

min
~q∈∆n

max
~p∈∆m

m∑
i=1

n∑
j=1

piqjMij ≤
1

2
− γ (1)

Now, for any arbitrary ~q ∈ ∆n, we have

max
~p∈∆m

m∑
i=1

n∑
j=1

piqjMij = max
~p∈∆m

m∑
i=1

pi

n∑
j=1

qjI(hj(~xi) 6= yi)

= max
i∈{1,··· ,m}

n∑
j=1

qjI(hj(~xi) 6= yi) .

Let ~q∗ denote the distribution ~q that minimizes this expression. Equation 1 implies that

max
i∈{1,··· ,m}

n∑
j=1

q∗j I(hj(~xi) 6= yi) ≤
1

2
− γ .

This implies that for all i,
n∑
j=1

q∗jhj(~xi)yi =
n∑
j=1

q∗j (1− 2I(hj(~xi) 6= yi))

= 1− 2
n∑
j=1

q∗j I(hj(~xi) 6= yi) ≥ 1− 2

(
1

2
− γ
)

= 2γ.
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3 Bounding the Margin on the Training Data

Let’s now turn our attention back to AdaBoost. Define

f(~xi) =

∑T
t=1 αtht(~xi)∑T

t=1 αt
,

so the L1-margin of ~xi is yif(~xi). In the last class, we showed that it is possible to bound

êrr(h) ≤
T∏
t=1

2
√
εt(1− εt) .

This bound can actually be generalized to

1

m

m∑
i=1

I(yif(~xi) ≤ θ) ≤
T∏
t=1

2

√
ε1−θt (1− εt)1+θ

for any value of θ ≥ 0. When θ = 0 we get back the bound from the last class. The proof is very similar to
the proof of the θ = 0 case so we won’t go through it here.

If the weak learning assumption holds, then for all t, εt ≤ 1/2− γ, and so

1

m

m∑
i=1

I(yif(~xi) ≤ θ) ≤
(√

(1− 2γ)1−θ(1 + 2γ)1+θ

)T
.

If θ < γ, then the quantity inside the square root is less than 1, and the quantity on the right will go to
0 as T gets large. (Exercise: Verify this.) This implies that as T grows, we will eventually get to a point
where the margin of every training example is at least γ.

4 Back to Generalization Error

It turns out that it’s possible to use these results to bound the generalization error of AdaBoost too. We
state this bound for finite weak hypothesis spaces, H. Let D be a distribution over X × {−1, 1}, and let
( ~x1, y1), · · · , ( ~xm, ym) be sampled i.i.d. from this distribution. For any δ, with probability at lest 1− δ, for
all f of the form f(~x) =

∑T
i=1 αtht(~x) with T > 0, and h(~x) = sign(f(~x)),

err(h) ≤ 1

m

m∑
i=1

I(yif(~xi) ≤ θ) +O

(√
logm log |H|

mθ2
+ log

1

δ

)
.

Let’s examine this theorem. The first term on the right hand side is precisely the fraction of points in
our sample that have margin less than θ, which we know goes to 0 as T gets big. Therefore, this theorem
provides a bound on err(h) with one term that goes to 0 as T gets big, and one term that doesn’t depend on T
at all. This confirms the empirical observations that the generalization error of AdaBoost tends to decrease
as T gets big.
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