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Lecturer: Jennifer Wortman Vaughan

1 Regret Bound for Randomized Weighted Majority

In the last class, we proved a general regret bound for Follow the Regularized Leader. In particular, for any
arbitrary sequence of losses~ℓ1, · · · , ~ℓT with eachℓi,t ∈ [0, 1], let ~p1, · · · , ~pT be the distributions chosen by
Follow the Regularized Leader with parameterη and regularizerR. Then for any~p ∈ ∆n,

T
∑

t=1

~ℓt · ~pt −
T
∑

t=1

~ℓt · ~p ≤
T
∑

t=1

~ℓt · (~pt − ~pt+1) +
1

η
(R(~p)−R(~p1))

which implies that

T
∑

t=1

~ℓt · ~pt − min
p∈∆n

T
∑

t=1

~ℓt · ~p ≤
T
∑

t=1

~ℓt · (~pt − ~pt+1) +
1

η

(

max
~p∈∆n

R(~p)− min
~p∈∆n

R(~p)

)

.

Today we will use this result to prove a regret bound ofO(
√
T log n) for Randomized Weighted Major-

ity, which we know is a Follow the Regularized Leader algorithm with

R(~p) = −H(~p) = −
n
∑

i=1

pi log
1

pi
.

To do this, we must bound the two terms on the right hand side of the bound above.

Step 1: Bounding the Range of the Regularizer

We begin by deriving upper and lower bounds on the entropy functionH(~p). The lower bound is easy. Since
for all i, 0 ≤ pi ≤ 1 , pi log 1

p i
≥ 0. (Remember that we define0 log(1/0) to be0 by convention.) As we

discussed before,H(~p) = 0 is achieved when~p puts all of its weight on a single expert.
To upper boundH(~p), we can use Jensen’s inequality. We get

H(~p) =
n
∑

i=1

pi log
1

pi
≤ log

n
∑

i=1

pi
1

pi
= log

n
∑

i=1

1 = logn .

This value is achieved when~p is uniform.
We have that

1

η

(

max
~p∈∆n

R(~p)− min
~p∈∆n

R(~p)

)

=
1

η
(0− (− log n)) =

1

η
logn .

All CS260 lecture notes build on the scribes’ notes written by UCLA students inthe Fall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of themcontain errors. If you spot an error, please email Jenn.

1



Step 2: Bounding the Stability Term

We will prove the following lemma, which gives a bound on the stability term for RWM. We make use of
the fact that we can write the probability that RWM assigns to experti at timet as

pi,t =
wi,t

∑n
j=1wj,t

where
wi,t = e−ηLi,t−1 .

The constant 2 in this bound can be improved, but we won’t worry aboutthat here.

Lemma 1. For any sequence of losses ~ℓ1, · · · , ~ℓT with each ℓi,t ∈ [0, 1], let ~p1, · · · , ~pT be the distributions
chosen by Randomized Weighted Majority with parameter η. For all t,

~ℓt · (~pt − ~pt+1) ≤ 2η .

Proof: First we note that this bound holds trivially for allη ≥ 1/2 since~pt ∈ ∆n and~0 ≤ ~ℓt ≤ ~1 for all t.
For the remainder of the proof, we consider the case in whichη < 1/2.

Let’s first think about the relationship betweenwi,t andwi,t+1 for somei andt. We have

wi,t+1 = e−ηLi,t = e−η(Li,t−1+ℓi,t) = e−ηLi,t−1e−ηℓi,t = wi,te
−ηℓi,t .

Sinceℓi,t ∈ [0, 1], e−η ≤ e−ηℓi,t ≤ 1. Combining this with the last equation, we get

wi,t+1 ≤ wi,t

and
wi,t+1 ≥ wi,te

−η .

Using these two bounds, we can relatepi,t to pi,t+1. In particular, we have

pi,t =
wi,t

∑n
j=1wj,t

≤ eηwi,t+1
∑n

j=1wi,t+1
= eηpi,t+1 .

Since this holds for all expertsi, we have

~ℓt · (~pt − ~pt+1) ≤ ~ℓt ·
(

(eη~pt+1)− ~pt+1

)

= ~ℓt ·
(

eη − 1
)

~pt+1

≤ (eη − 1)

≤ (e− 1)η

≤ 2η

where the second inequality holds because we are only considering the case in whichη ≤ 1/2 (see Figure 1).
The point of this step is to get some linear bound on(eη − 1); we’re not worrying too much about the
constants, and clearly this could be made tighter.

Exercise: During the break, someone in the class pointed out that this bound can be tightened to get
~ℓt · (~pt − ~pt+1) ≤ η without requiring the case analysis at all by using the inequality1 + x ≤ ex that we
saw, for example, in Lecture 2. It’s true! Try working through this alternative analysis. (The first few steps
remain the same.)
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Figure 1:eη − 1 ≤ (e− 1) · η for η ≤ 1

Step 3: Putting it Together

We can now apply the general FTRL regret bound to get a regret bound for Randomized Weighted Majority:

T
∑

t=1

ℓt · ~pt −
T
∑

t=1

ℓt · ~p ≤
T
∑

t=1

(

ℓt · ~pt − ℓt · ~pt−1

)

+
1

η

(

R(~p)−R(~p1)
)

≤ 2ηT +
1

η
log n .

If we know the valueT (or an upper bound onT ) in advance, we can optimize the value ofη to minimize
this bound. Setting the derivative of the bound equal to 0, we get that it is minimized when

η =

√

log n

2T
,

giving us a regret bound of2
√
2T log n = O(

√
T log n), which is sublinear as desired. Since the average

regret per time step approaches 0 asT gets large, we call RWM a “no-regret” algorithm.
A few comments are in order. First, achieving this bound requires knowingT in advance. However,

there are tricks that can be used to get around this (such as the so-called“doubling trick”), yielding bounds
that are only slightly worse whenT is unknown.

Second, although we only showed it for the particular case of RWM, it turns out that as long as the
regularizerR is strongly convex, the upper bound on the regret for FTRL will alwaysbe sublinear inT .
For example, sublinear regret can be achieved usingR(~p) = ||~p||2 (which turns out to be equivalent to the
well-studied “Online Gradient Descent” algorithm).

2 The Minimax Theorem of Game Theory

We will now see how the existence of no-regret algorithms implies a key resultfrom game theory, Von
Neumann’s Minimax Theorem. We begin by reviewing the idea of a two-player zero-sum game.

A two-player zero-sum game is defined by a matrixM ∈ Rn×m. Player 1 (the “row player”) chooses a
row i ∈ {1, · · · , n}, and Player 2 (the “column player”) chooses a columnj ∈ {1, · · · ,m}. Player 1 then
suffers a loss ofMi,j (or equivalently receives the payoff−Mi,j), while Player 2 receives the payoffMi,j .
Table 1 shows the payoff matrixM for the well known game Rock-Paper-Scissors.
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R P S
R 0 +1 -1
P -1 0 +1
S +1 -1 0

Table 1: Matrix corresponding to the losses for player 1 for Rock-Paper-Scissors.

For a game like Rock-Paper-Scissors, there is an advantage to using a randomized strategy for each
player. We can therefore think of Player 1 as choosing a distribution~p over actions (rows)1, · · · , n, and
Player 2 choosing a distribution~q over actions (columns)1, · · · ,m.

Consider the following two scenarios:

1. Player 1 announces a distribution~p, after which Player 2 announces a distribution~q. Player 1 receives
the expected payoff−∑n

i=1

∑m
j=1 piqjMi,j , while Player 2 receives

∑n
i=1

∑m
j=1 piqjMi,j .

2. Player 2 announces a distribution~q, after which Player 1 announces a distribution~p. Again, Player 1
receives the expected payoff−∑n

i=1

∑m
j=1 piqjMi,j , while Player 2 receives

∑n
i=1

∑m
j=1 piqjMi,j .

Intuitively, it seems that the person who can choose their strategy secondshould have an advantage.
However, one can show mathematically that neither player has an advantageif both play optimally. This is
formalized in the following theorem, which we can prove using the existence ofno-regret algorithms.

Theorem 1 (Von Neumann Minimax Theorem). For any n×m matrix M ,

min
~p∈∆n

max
~q∈∆m

n
∑

i=1

m
∑

j=1

piqjMi,j = max
~q∈∆m

min
~p∈∆n

n
∑

i=1

m
∑

j=1

piqjMi,j .

Proof: We will prove a special case of this theorem for matricesM with entries in[0, 1], but this result can
be generalized easily. (Exercise: Show how it can be generalized to anyarbitrary matrixM .)

Suppose that two players play the zero-sum game defined by the matrixM repeated for a sequence of
roundst = 1, · · · , T . At each roundt, Player 1 chooses a distribution~pt and Player 2 chooses a distribution
~qt.

For everyi andt, defineℓi,t =
∑m

j=1 qj,tMi,j . This is the loss (negative payoff) that Player 1 would
suffer for choosing the actioni. We can then write the expected loss of Player 1 on roundt as

∑n
i=1 pi,tℓi,t =

~pt · ~ℓt.
Suppose that Player 1 chooses~pt at each round by running a no-regret algorithm on this sequence of

losses, and suppose that Player 2, knowing this, chooses the distribution~qt on each round that will hurt
Player 1 the most. Since the average per time step regret of Player 1’s algorithm goes to 0, we know that for
anyǫ > 0, it is possible to makeT large enough so that

1

T

(

T
∑

t=1

~pt · ~ℓt − min
~p∈∆n

T
∑

t=1

~p · ~ℓt
)

≤ ǫ .

Suppose we makeT sufficiently large.
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For anyt,

min
~p∈∆n

max
~q∈∆m

n
∑

i=1

m
∑

j=1

piqjMi,j ≤ max
~q∈∆m

n
∑

i=1

m
∑

j=1

pi,tqjMi,j

=
n
∑

i=1

m
∑

j=1

pi,tqj,tMi,j .

This implies that

min
~p∈∆n

max
~q∈∆m

n
∑

i=1

m
∑

j=1

piqjMi,j ≤ 1

T

T
∑

t=1

n
∑

i=1

m
∑

j=1

pi,tqj,tMi,j

=
1

T

T
∑

t=1

~pt · ~ℓt

≤ 1

T
min
~p∈∆n

T
∑

t=1

~p · ~ℓt + ǫ

≤ max
~q∈∆m

min
~p∈∆n

n
∑

i=1

m
∑

j=1

piqjMi,j + ǫ .

We can driveǫ arbitrarily close to0 and this bound will still hold, so we must have that

min
~p∈∆n

max
~q∈∆m

n
∑

i=1

m
∑

j=1

piqjMi,j ≤ max
~q∈∆m

min
~p∈∆n

n
∑

i=1

m
∑

j=1

piqjMi,j .

It remains to show the opposite, that is, that

max
~p∈∆n

min
~q∈∆m

n
∑

i=1

m
∑

j=1

piqjMi,j ≤ min
~q∈∆m

max
~p∈∆n

n
∑

i=1

m
∑

j=1

piqjMi,j .

This is the more intuitive direction that says that the loss that Player 1 can guarantee himself when playing
second is no more than the loss that Player 1 can guarantee himself when playing first. The proof is left as
an exercise.
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