CS260: Machine Learning Theory
Lecture 12: No Regret and the Minimax Theorem of Game Theory
November 2, 2011

Lecturer: Jennifer Wortman Vaughan

1 Regret Bound for Randomized Weighted M ajority

In the last class, we proved a general regret bound for Follow thal®&zed Leader. In particular, for any
arbitrary sequence of losségs - - - , {7 with each?; ; € [0, 1], letpi, - - - , pr be the distributions chosen by
Follow the Regularized Leader with paramefeand regularizeR. Then for anyp € A,,,
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Today we will use this result to prove a regret boundXf,/7 log n) for Randomized Weighted Major-
ity, which we know is a Follow the Regularized Leader algorithm with
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To do this, we must bound the two terms on the right hand side of the bourd.abo

Step 1: Bounding the Range of the Regularizer

We begin by deriving upper and lower bounds on the entropy funéfigs). The lower bound is easy. Since
foralli,0 <p; <1, p;log %i > 0. (Remember that we defirtdog(1/0) to be0 by convention.) As we

discussed beforé] (p) = 0 is achieved whep puts all of its weight on a single expert.
To upper bound? (p), we can use Jensen’s inequality. We get
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This value is achieved whenis uniform.
We have that
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All CS260 lecture notes build on the scribes’ notes written by UCLA studettteifrall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of thatain errors. If you spot an error, please email Jenn.



Step 2: Bounding the Stability Term

We will prove the following lemma, which gives a bound on the stability term folNRWVe make use of
the fact that we can write the probability that RWM assigns to expatrtimet as
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The constant 2 in this bound can be improved, but we won't worry athatthere.

Lemma 1. For any sequence of losses /1, - - - , £ with each ¢;; € [0,1], let 5y, - - - , pr be the distributions
chosen by Randomized Weighted Majority with parameter 7. For all ¢,
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Proof: First we note that this bound holds trivially for afl> 1/2 sincep; € A, and0 < ¢; < 1 for all ¢.
For the remainder of the proof, we consider the case in whiehl /2.
Let’s first think about the relationship betweef,; andw; ;11 for some; andt. We have
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Sincel;; € [0,1],e7" < e "t < 1. Combining this with the last equation, we get
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Using these two bounds, we can relgte to p; ;1. In particular, we have
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Since this holds for all experiswe have
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where the second inequality holds because we are only consideringthmeghichy < 1/2 (see Figure 1).
The point of this step is to get some linear bound(eh — 1); we're not worrying too much about the
constants, and clearly this could be made tighter. O

Exercise: During the break, someone in the class pointed out that thisl lwamnbe tightened to get
0 - (Pt — pr+1) < n without requiring the case analysis at all by using the inequality x < e that we
saw, for example, in Lecture 2. It's true! Try working through this altéuesanalysis. (The first few steps
remain the same.)



Figure 1:e" —1 < (e—1)-nforn <1

Step 3: Putting it Together
We can now apply the general FTRL regret bound to get a regretidouRandomized Weighted Majority:
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If we know the valudl” (or an upper bound dh) in advance, we can optimize the value)xdb minimize
this bound. Setting the derivative of the bound equal to 0, we get that it isnzied when
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giving us a regret bound &/27 logn = O(+/T logn), which is sublinear as desired. Since the average
regret per time step approaches agets large, we call RWM a “no-regret” algorithm.

A few comments are in order. First, achieving this bound requires knoWiimgadvance. However,
there are tricks that can be used to get around this (such as the so“daliéding trick”), yielding bounds
that are only slightly worse whéf is unknown.

Second, although we only showed it for the particular case of RWM, istorrt that as long as the
regularizerR is strongly convex, the upper bound on the regret for FTRL will alwagsublinear irl".

For example, sublinear regret can be achieved ugifi§) = ||p]|2 (which turns out to be equivalent to the
well-studied “Online Gradient Descent” algorithm).

2 TheMinimax Theorem of Game Theory

We will now see how the existence of no-regret algorithms implies a key rizsuft game theory, Von
Neumann’s Minimax Theorem. We begin by reviewing the idea of a two-plagmergum game.

A two-player zero-sum game is defined by a mafvixe R™*™. Player 1 (the “row player”) chooses a
row: € {1,---,n}, and Player 2 (the “column player”) chooses a colujmn {1,--- ,m}. Player 1 then
suffers a loss of\; ; (or equivalently receives the payoff); ;), while Player 2 receives the payd¥; ;.
Table 1 shows the payoff matrix/ for the well known game Rock-Paper-Scissors.



R P S
R| 0 +1 -1
P|-1 0 +1
S|+1 -1 O

Table 1: Matrix corresponding to the losses for player 1 for Rock-P8pessors.

For a game like Rock-Paper-Scissors, there is an advantage to usingamiaed strategy for each
player. We can therefore think of Player 1 as choosing a distribytiover actions (rows}), - -- ,n, and
Player 2 choosing a distributignover actions (columnsl), - - - , m.

Consider the following two scenarios:

1. Player 1 announces a distributigrafter which Player 2 announces a distributidiPlayer 1 receives
the expected payoff > 1", 37" | pig; M, ;, while Player 2 receivel " | > " | pigj M, ;.

2. Player 2 announces a distributignafter which Player 1 announces a distributjprAgain, Player 1
receives the expected payeffd i, > | piq; M; j, while Player 2 receivel_; | >0 pigj M ;.

Intuitively, it seems that the person who can choose their strategy ssboutd have an advantage.
However, one can show mathematically that neither player has an advératgeplay optimally. This is
formalized in the following theorem, which we can prove using the existenne-oégret algorithms.

Theorem 1 (Von Neumann Minimax Theorem}or any n x m matrix M,
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Proof: We will prove a special case of this theorem for matrigésvith entries in[0, 1], but this result can
be generalized easily. (Exercise: Show how it can be generalized t&rbitmary matrix)/.)

Suppose that two players play the zero-sum game defined by the matrdpeated for a sequence of
roundst = 1,--- ,7. At each round, Player 1 chooses a distributiphand Player 2 chooses a distribution
G-

For every: andt, definel; ; = Z;”:l ¢;+M; ;. This is the loss (negative payoff) that Player 1 would
suffer for choosing the actian We can then write the expected loss of Player 1 on rewsd " | p; {i+ =
s

Suppose that Player 1 chooggsat each round by running a no-regret algorithm on this sequence of
losses, and suppose that Player 2, knowing this, chooses the distriguttoneach round that will hurt
Player 1 the most. Since the average per time step regret of Player 1#ratggoes to 0, we know that for
anye > 0, it is possible to maké’ large enough so that
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Suppose we make sufficiently large.



For anyt,

n m n m
min max E E piqiM;; < max E E Piq; M,
peAn qu'm 3 3 qu'm N )
=1 j=1 i=1 j=1
= E E Di 45, +M; i,j +
i=1 j=1

This implies that
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We can drivee arbitrarily close td) and this bound will still hold, so we must have that
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It remains to show the opposite, that is, that
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This is the more intuitive direction that says that the loss that Player 1 caargaarhimself when playing
second is no more than the loss that Player 1 can guarantee himself whiexg filssy. The proof is left as
an exercise. O



