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1 LastTime...

In the last class, we introduced the expert advice framework.

Learning from Expert Advice

Ateachround € {1,2,--- ,T},

e The learner chooses a distributign
e Eachexpert € {1,---,n} sufferslos¥;; € [0,1].

e The learner suffers expected Igss 0.

The regret of the learning algorithm is then defined to be
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We first discussed the Randomized Weighted Majority algorithm with parametat each round,
RWM chooseg; by setting

e~ Mlit—1
Pit = W
for all expertsi € {1,---,n}. We also introduced the class of Follow the Regularized Leader (FTRL)

algorithms, that use weights of the form

t—1
pp = arg peliAn (anS P+ R(ﬁ))
p n s:1

whereR(-) is a convex function called the regularizer, and- 0 is a parameter that allows us to adjust the
relative impact of the two terms.

Finally, we mentioned a useful fact called Jensen’s inequality, which camesurprisingly often in
machine learning.

Theorem 1 (Jensen’s Inequality)For any convex function f and any random variable X, f(E[X]) <
E[f(X)]. Conversely, for any concave function f and any randomvariable X, E[f(X)] < f(E[X]).

One trick for remembering which way the inequalities go is to keep in mind the foltppiittures.

All CS260 lecture notes build on the scribes’ notes written by UCLA studettteifrall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of thatain errors. If you spot an error, please email Jenn.



Convex function f Concave function f
f(E [x])
/ ) A
f(E [x])
> X > X
(a) convex graph (b) concave graph

2 Weighted Majority and Entropy

We can prove that RWM is a Follow the Regularized Leader algorithm with
& 1
R(p) = —H(p) = =Y _ pilog o
i=1 t

To show this, it is sufficient to show that the distributinchosen by RWM at time is the distributiony’
that minimizes

Ny Il p—H(p). €y

First note that for any € A,,,
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By Jensen’s inequality, we then have that for any A,,,
s zpzlog(e s
> —log (sze e 1)
— (Z e—an—l) @

i=1

and so this is a lower bound on the quantity that the FTRL algorithm will minimize.
Plugging the RWM distributiop; into Equation 2, we get
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Since the final expression in Equation 4 is equal to the final expressioguatién 3, it must be the case
that the Randomized Weighted Majority algorithm chooses the distribution that m@sraiguation 1.

3 Regret Boundsfor Follow the Regularized L eader

We will now prove a regret bound that holds for the class of Follow theuReged Leader algorithms. We
start with a useful lemma.

3.1 TheAdvantage of Knowing the Future

We first prove a lemma that can be viewed as a regret bound for a hyipatregorithm that chooses the

distributionp’that minimizes
t

nY lo-p+R
s=1

at each time; that is, a hypothetical algorithm that uses the distribufipn instead ofp; at timet. Note
that it is not actually possible to run such an algorithm sificis not known to the algorithm at the time
whenp; is chosen. However, we will be able to use this bound to derive the regueid for FTRL.

Lemma 1 (Be-the-Regularized-Leader Lemmékt p; be the distribution chosen by Follow the Regularized
Leader attimet. For any 5 € A, for anyn > 0,

th D1 — th P < —(R(p) — R(p1)) - ()
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Proof: This proof is by induction off".
Consider the base case’Bf= 0. The left hand side of the equation is 0. By definition of the algorithm,
we know that

p1 = argmin (n-0+ R(p)) = argmin R(p) .
PEAR PEAR

Therefore, for any,
1
RHS = 6(R(m — R(p1)) > 0= LHS,

and so our base case holds.
Now suppose that the equation holds for every value Up tol1. Then for ally € A,,,
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Since the inequality holds fany distributionp, we can plug ip’= pr11 and get
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Adding ¢7 - pr,1 to both sides we get

T
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By definition, pr 1 is the distributionp’ that minimizes the right hand side of this equation. Therefore, any
otherp’ can only increase the value of RHS. Thereforedioy p € A,

th P11+ Rpl ZE P+ 1

t=1 N

Rearranging terms, we see that Equation 5 hold§{geroving the lemma. O

3.2 TheRegret Bound for Follow the Regularized L eader
Using this lemma, we can bound the regret of FTRL. Rearranging Equatiee §et that for any’ € A,,,
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Adding " ¢ - p; to both sides yields
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We can see that the left hand side of this inequality is the regret of FTRL egihect to the functiop.
Since this holds for any, it holds for thep’ with minimal cumulative loss, which we know will put all of
its weight on a single expert. Therefore, this gives us a regret bouve ¢ain bound the terms on the right.
We have proved the following theorem.

Theorem 2. For any sequence of Iossesil, e ,ZT, let p1, - - - , pr bethedistributions chosen by Follow the
Regularized Leader with parameter  and regularizer R. Then

T T
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Both terms in this bound depend on the choice of regularizer. The firstitetme bound measures how
quickly the algorithm’s distribution changes from one time step to the next, tHaiisstable the algorithm
is. (Remember, as we saw with the Follow the Leader algorithm, instability is bad isettilsg.) The first
term is a measure of how wide a range of values the regularizer can take on

Next time we will see how to apply this theorem to obtain a regret bour@ ¢f7" log ) for Random-
ized Weighted Majority.



