
CS260: Machine Learning Theory
Problem Set 4

Due Monday, November 21, 2011

Ground Rules:

• This problem set is due at the beginning of class on November 21. Late assignments should be
submitted directly to the grader, and will be penalized 25% (i.e., 25 points). No assignments will be
accepted more than 24 hours late. Start early!

• You are strongly encouraged to discuss the problem set with other students in the class, as long as you
follow the rules outlined in the course academic honesty policy.

• All solutions must be typed; LaTeX is strongly recommended. Hand-written solutions will be penal-
ized 25%, and unreadable answers will not be graded.

• You will be graded on both correctness and clarity. Be concise and clear, especially when writing
proofs. Please make sure you define any notation that you use or variables that you introduce!!
You will be graded on what you wrote, not what you intended to write.

Problems:

1. Distribution-Specific Weak Learning (15 points)

The PAC learning model is said to be distribution-free because of the requirement that it must be
possible to achieve low error for any distribution D over the input space. It is possible to remove this
requirement and define a distribution-specific notion of learnability as follows.

Definition 1. A concept class C is (strongly) PAC learnable for the distribution D using a hypothesis
class H if there exists an algorithm A such that for any c ∈ C, for any ε ∈ (0, 1/2) and δ ∈ (0, 1/2),
given access to a polynomial (in 1/ε and 1/δ) number of examples drawn i.i.d. from D and labeled
by c, A outputs a function h ∈ H such that with probability at least 1− δ, err(h) ≤ ε.

We could similarly define a distribution-specific notion of weak PAC learnability.

In this problem, you will show that distribution-specific weak learnability does not imply distribution-
specific strong learnability. More specifically, let C be the class of all 2n functions from {−1, 1}n to
{−1, 1}. Find a distribution D over {−1, 1}n such that C is weakly learnable for D using some
hypothesis class H (e.g., H = C) but C is not strongly learnable for D. Provide an informal proof
sketch that shows that C is weakly learnable for D and not strongly learnable for D. (“Informal”
means you don’t need to work out every detail, but your argument should be convincing.)

2. Examining AdaBoost’s Distributions (25 points)

Suppose that we run AdaBoost on a set of labeled points (~x1, y1), · · · , (~xm, ym) using a weak learning
algorithm A that outputs a function from a class H that does not contain any function that perfectly
classifies all m input points. Suppose further that after running AdaBoost for T rounds, we find that
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the weak learning assumption holds at each round. That is, for every t ∈ {1, · · · , T}, εt ≤ 1/2 − γ
for some constant γ > 0. Prove that there cannot be any round t such that ht = ht+1.

3. Anytime Randomized Weighted Majority (60 points total)

In class we proved a regret bound of O(
√
T log n) for Randomized Weighted Majority under the

assumption that the number of rounds T is known in advance and can therefore be used to set the
parameter η. In this problem, we will prove a regret bound for an alternative version of Randomized
Weighted Majority that holds when the number of rounds is unknown.

(a) Consider the class of Time-Sensitive Follow the Regularized Leader algorithms, that use weights
of the form

~pt = arg min
~p∈∆n

(
t−1∑
s=1

~̀
s · ~p+

1

ηt
R(~p)

)
,

where the ηt are arbitrary positive parameters satisfying ηt ≥ ηt+1 for all t, and R is an arbitrary
convex function. Prove the following lemma.

Lemma 1. Let ~pt be the distribution chosen by the Time-Sensitive Follow the Regularized Leader
algorithm at time t. For any ~p ∈ ∆n and any time T ,

T∑
t=1

~̀
t · ~pt+1 −

T∑
t=1

~̀
t · ~p ≤

1

ηT+1
(R(~p)−R(~p1)) .

It might help you to define a quantity

δt =
1

ηt
− 1

ηt−1
.

to use in your analysis. (20 points)

(b) Define the Anytime RWM algorithm as follows. For each round t = 1, 2, · · · , for each expert
i ∈ {1, · · · , n}, the Anytime RWM sets

pi,t =
e−ηtLi,t−1∑n
j=1 e

−ηtLj,t−1

for some parameters η1, η2, · · · > 0 that satisfy ηt > ηt+1 for all t. (We will set these parameters
in the next part of the problem.)
Prove the following lemma for some constant c. (Aim for c = 1, but if you get a larger constant,
it’s ok.)

Lemma 2. For any sequence of losses ~̀1, · · · , ~̀T with each `i,t ∈ [0, 1], let ~p1, · · · , ~pT be the
distributions chosen by the Anytime Randomized Weighted Majority. For all t,

~̀
t · (~pt − ~pt+1) ≤ c ((t+ 1)ηt − tηt+1) .

It might help you to define another distribution ~q with

qi =
e−ηtLi,t∑n
j=1 e

−ηtLj,t
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and then separately bound ~̀t · (~pt − ~q) and ~̀t · (~q − ~pt+1). You also might want to use the old
1 + x ≤ ex trick. For parts of your analysis that are identical to proofs we went over in class,
you can simply reference the relevant proofs. (20 points)

(c) Set the Anytime RWM parameters for each t to be

ηt =

√
log n

t
.

Use Lemmas 1 and 2 to bound the regret of the Anytime RWM algorithm after T time steps.
Ignoring constants, your bound should be similar to the O(

√
T log n) bound derived in class for

the case that T is a specific known value.
It might help you to start by showing that

T∑
t=1

1√
t

= O(
√
T ) .

You do not need to have a correct solution to parts a or b to complete this problem. (20 points)
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