
CS260: Machine Learning Theory
Problem Set 1

Due Monday, October 10, 2011

Ground Rules:

• This problem set is due at the beginning of class on October 10. Please bring a hard copy of your
solutions with you to class. Slightly late assignments should be submitted directly to the grader, and
will be penalized 25% (i.e., 25 points). No assignments will be accepted more than 24 hours late.

• You are strongly encouraged to discuss the problem set with other students in the class, as long as
you follow the rules outlined in the course academic honesty policy. Don’t forget to list all of your
collaborators and properly credit any sources that you consult.

• All solutions must be typed; LaTeX is strongly recommended. Hand-written solutions will be penal-
ized 25%, and unreadable answers will not be graded.

• You will be graded on both correctness and clarity. Be concise and clear, especially when writing
proofs! If you cannot solve a problem completely, you will get more partial credit if you identify the
gaps in your argument rather than trying to cover them up.

Problems:

1. Finding a consistent hypothesis (20 points)

Let S be a set of m points labeled by an unknown function c ∈ C. Suppose you are given an efficient
algorithm A that PAC-learns C using H. Prove that you can use A to find in polynomial time (in m
and a confidence parameter δ) a hypothesis h ∈ H that is consistent with S with high probability.

2. Learning n-dimensional axis-aligned boxes (35 points total)

In this problem, we consider the class of n-dimensional axis-aligned boxes. Each function c in this
class is specified by a set of 2n values `c1, `

c
2, · · · , `cn and uc1, u

c
2, · · · , ucn which define an axis-aligned

n-dimensional box. Given an n-dimensional input vector ~x, c(~x) is defined to be 1 if for every
i ∈ {1, · · · , n} the ith coordinate of ~x lies in [`ci , u

c
i ]. Otherwise, c(~x) is defined to be 0.

An example of a 2-dimensional axis-aligned box is shown in Figure 1.

Hint: For each problem below, first think about the case when n = 1. Then move on to the n = 2 case
before trying to find a general solution. (You do not have to provide separate proofs for these cases.)

(a) Let C be the class of n-dimensional axis-aligned boxes, and c ∈ C be the unknown target func-
tion. State an efficient algorithm that takes as input an arbitrary set of points ~x1, ~x2, · · · , ~xm,
each in Rn, and their corresponding labels c(~x1), c(~x2), · · · , c(~xm), and outputs a function
h ∈ C that is consistent with this data. You may assume a model of computation in which
real numbers can be stored in constant memory and in which basic operations on real numbers
(addition, comparisons, etc.) take constant time. Your algorithm should be simple enough to
implement in a few lines of code. (10 points)
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Figure 1: An example of a 2-dimensional axis-aligned box and some labeled points.

(b) LetD be an arbitrary, unknown distribution over points in Rn, and let c be an arbitrary, unknown
n-dimensional axis-aligned box. Suppose your algorithm from part a is given as input m points
~x1, ~x2, · · · , ~xm drawn i.i.d. from D and their corresponding labels c(~x1), c(~x2), · · · , c(~xm).
Let h be the function output by your algorithm. Let δ be a fixed parameter in (0, 1/2). Without
referring to VC dimension (which we will get to a little later in the class), state and prove an
upper bound on Pr~x∼D[h(~x) 6= c(~x)] that holds with probability at least 1−δ. Don’t worry about
getting the best possible constant factors in your bound, just focus on the important parameters
(n, δ, m). (25 points)

3. A Two-Distribution PAC Model (45 points total)

In this problem, we consider a variant of the PAC model in which the learning algorithm may explicitly
request positive examples or negative examples, but must find a hypothesis that performs well on both
the marginal distribution over positive examples and the marginal distribution over negative examples.

Formally, we say that an algorithm A PAC-learns a concept class C using a hypothesis class H in the
two-distribution variant of the PAC model if for any c ∈ C, for any distributionD+

c over the the subset
of instance space that c labels positively and any distributionD−c over the subset of instance space that
c labels negatively, for any ε ∈ (0, 1/2) and δ ∈ (0, 1/2), given access to a polynomial (in 1/ε and
1/δ) number of examples drawn i.i.d. from D+

c and a polynomial number of examples drawn i.i.d.
fromD−c ,A outputs a function h ∈ H such that with probability at least 1−δ, Prx∼D+

c
[h(x) = 0] ≤ ε

and Prx∼D−
c
[h(x) = 1] ≤ ε.

A efficiently PAC-learns C usingH in the two-distribution variant if its running time is bounded by a
polynomial in 1/δ and 1/ε.

In the following problems, use the basic (“preliminary”) definition of the PAC model that was given
in class on September 28.

(a) Prove that if C is efficiently PAC-learnable usingH in the basic (one distribution) model, then C
is efficiently PAC-learnable usingH in the two-distribution model. (20 points)

(b) Let h0 be a function that always outputs 0, and h1 be a function that always outputs 1. Prove
that if C is efficiently PAC-learnable usingH in the two-distribution model, then C is efficiently
PAC-learnable using H ∪ {h0, h1} in the basic model. Hint: You may wish to use Hoeffding’s
inequality (which we will cover in class, but not until October 5) or Chebyshev’s inequality
in your solution. Try to give a formal proof, but if you cannot, provide a sketch of how the
argument should go. (25 points)
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