
CS269: Machine Learning Theory
Lecture 15: Support Vector Machines

November 15, 2010

Lecturer: Jennifer Wortman Vaughan
Scribes: Nikhilesh Tadiparthi, Sritulasi Edpuganti, Karthika Mohan

In today’s lecture we will begin discussing Support Vector Machines (aka SVMs).

1 Introduction

In the previous lectures, we saw that large margin classifiers can lead to low generalization error. One might
ask if we can design an algorithm that explicitly maximizes the margin on our training data. This is the basic
idea behind Support Vector Machines. We will see how to maximize the margin directly using techniques
from convex optimization

Before we dive into SVMs, let’s briefly review the idea behind convex optimization.

2 Standard form optimization

We say that an optimization problem is in standard form if we can write it as

min
~w

f(~w)

s.t. gi(~w) ≤ 0, i = 1, ..., k

hi(~w) = 0, i = 1, ..., `

where f is convex, each of the functions gi is convex, and each of the functions hi is affine.1 The constraints
gi(~w) ≤ 0, i = 1, ..., k are referred to as inequality constraints, while the constraints hi(~w) = 0, i = 1, ..., `
are equality constraints.

Standard form optimization problems are nice because they can be solved efficiently using a variety of
different techniques including the subgradient method, the interior point method, and the ellipsoid method.
While we will not have time to discuss these techniques in detail in this class, anyone who is curious can
refer to the Boyd and Vandenberghe book, which is available for free online.2

3 Maximizing the Margin via Optimization

We know that the linear threshold function is represented by y = sign(~w · ~x + b), where ~w is the weight
vector and b is the intercept (signifying that the threshold function may not pass through the origin).

1The function hi(~w) is said to be affine if it can be written as hi(~w) = ~z · ~w + b
2Refer book: http://www.stanford.edu/˜boyd/cvxbook/bv_cvxbook.pdf

1

Figure 1: Depiction of a typical 2 dimensional threshold function and margin

Recall from Lecture 6 that the margin for the point x when ‖ ~w ‖= 1 is given by

γi = yi(~w · ~x+ b)

It is simple to show that when ‖ ~w ‖6= 1 the margin for point x is given by

γi = yi(
~w

‖ ~w ‖
· ~x+

b

‖ ~w ‖
)

This derivation of this expression is very similar to derivation for the normalized version. From the previous
lecture on Adaboost, we know that large margin in linear threshold functions implies small generalization
error. Intuitively, the larger the value of margin of a point, the higher is the confidence that the point belongs
to a certain class.

Assume we have m separable points (~x1, y1), (~x2, y2), . . . (~xm, ym). Given these training samples, we
would like to find a classifier that maximizes the value of the margin. We discuss several attempts to
formulate this problem as a standard form convex optimization problem below.

3.1 Attempt 1

First, note that for any constant k > 0, sign(~w · ~x + b) = sign(k ~w · ~x + kb). This implies that any linear
threshold function has a equivalent representation with ‖ ~w ‖= 1. We might as well try to explicitly restrict
‖ ~w ‖= 1 with our constraints so that we can use the simpler definition of margin.

We can formalize our optimization problem as:

max
γ,~w,b

γ

s.t. yi(~w · ~xi + b) ≥ γ, i = 1, ..., k

‖ ~w ‖= 1

Unfortunately, the equality constraint ‖ ~w ‖= 1 is not affine, so this is not a standard form optimization
problem and may be difficult to solve. So, we try a different approach and proceed on to the next attempt.

2

3.2 Attempt 2

Let’s drop the constraint that ‖ ~w ‖= 1 and work with the more complicated definition of margin. Note that
requiring the value of margin to be at least γ is equivalent to requiring yi(~w · ~xi+ b) ≥ γ ‖ ~w ‖, ∀i. We can
therefore formalize the above optimization problem as:

max
γ,~w,b

γ

s.t. yi(~w · ~xi + b) ≥ γ ‖ ~w ‖, i = 1, ..., k

We see that the term ‖ ~w ‖ is still present in the inequality constraint. It turns out that we can reformulate
this optimization problem in a clever way to get rid of this annoying constraint. To do this, we first replace
γ||~w|| with a new variable γ̂, and rewrite the problem in terms of this variable:

max
γ,~w,b

γ̂

‖ ~w ‖
s.t. yi(~w · ~xi + b) ≥ γ̂, i = 1, ..., k

Now, suppose that γ̂ = γ?, ~w = ~w? and b = b? is a solution to this problem. It can be easily verified that
γ̂ = 1, ~w = ~w?

γ? and b = b?

γ? must also be a solution. Furthermore, since we have seen earlier that scaling the
values of ~w and b in the term ~w ·~x+b does not affect the final classification result, we know that this solution
corresponds to the same threshold. Using this, we can reformulate our optimization problem, removing γ̂
entirely, without missing any potential solutions. We get:

max
~w,b

1

‖ ~w ‖
s.t. yi(~w · ~xi + b) ≥ 1, i = 1, ..., k

which we know will have the same solutions as:

min
~w,b

1

2
· ‖ ~w ‖2

s.t. yi(~w · ~xi + b) ≥ 1, i = 1, ..., k

We now have the optimization problem in the form we want! Furthermore, since the objective function is
quadratic and we have linear inequality constraints, this convex optimization problem could be solved using
any standard Quadratic Programming technique.

If we wanted, we could stop at this point and call ourselves done. However, it turns out that the dual of
this problem satisfies a number of nice properties (in particular, it is easy to solve, and will allow us to use
the “kernel trick” which will be described in the next lecture). So we go on and find the dual of the problem.

4 A Primer on Convex Optimization

To find the dual of this optimization problem (which we will attempt in the next class) we will need to review
some key ideas from convex optimization.

3

Consider the generic standard form of optimization problem we defined earlier:

min
~w

f(~w)

s.t. gi(~w) ≤ 0, i = 1, ..., k

hi(~w) = 0, i = 1, ..., `

The Lagrangian for this problem is defined as:

L(~w, ~α, ~β) = f(~w) +

k∑
i=1

αigi(~w) +

l∑
i=1

βihi(~w)

where ~α and ~β are called the Lagrange multipliers or KKT Multipliers. The reason that the Lagrangian is
useful is that solving the above optimization problem is actually the same as finding the maximum value
of the Lagrangian, where the maximization is over ~α ≥ 0 and β. To see this, first verify that when the
constraints are met, the Lagrangian is maximized when we set each αi to 0 and each βi to any arbitrary
value. In this case, the second and third terms of the Lagrangian are 0, and we’re left with just f(~w). You
should also be able to verify that the maximum value is infinity if the constraints are not satisfied. That is,

max
~α,~β:αi≥0

L(~w, ~α, ~β) =

{
f(~w) : if constraints are satisfied
∞ : otherwise

Because of this, the standard form optimization problem that we care about is equivalent to the following
primal optimization problem:

min
~w

max
~α,~β:αi≥0

L(~w, ~α, ~β)

To define the dual optimization problem, we switch the min and max:

max
~α,~β:αi≥0

min
~w

L(~w, ~α, ~β)

Let’s see how these problems are related. Let p? be the value of primal problem and d? be the value of dual
problem. In general, we know that p? ≥ d?. However, if f and the gi are convex, the hi are affine, and ∀i
∃~w : gi(~w) < 0, then it turns out that p? = d? = L(~w?, ~α?, ~β?) for some optimal solution ~w?, ~α?, ~β?. In
this case, to obtain a solution to the primal problem, we can solve the dual instead.

4.1 KKT Conditions

Under the same set of conditions on the optimization problem, ~w?, ~α? and ~β? are a solution if and only if
they satisfy the KKT conditions:

• Stationarity:
∂

∂wi
L(~w?, ~α?, ~β?) = 0 i = 1, ..., n

4

• Primal Feasibility:

hi(~w
?) = 0 i = 1, ..., l

gi(~w
?) ≤ 0 i = 1, ..., k

• Dual Feasibility:
~α? ≥ 0 i = 1, ..., k

• Complementary Slackness:
α?i · gi(~w?) = 0 i = 1, ..., k

In the next lecture, we will use these ideas to find the dual of our minimization problem, which will be the
Support Vector Machine algorithm.

5

